| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | Unicode version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 |
|
| Ref | Expression |
|---|---|
| necomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 |
. 2
| |
| 2 | necom 2484 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: ifnefals 3647 difsnb 3810 0nelop 4333 frecabcl 6543 fidifsnen 7028 tpfidisj 7087 omp1eomlem 7257 difinfsnlem 7262 fodjuomnilemdc 7307 en2eleq 7369 en2other2 7370 netap 7436 2omotaplemap 7439 ltned 8256 lt0ne0 8571 zdceq 9518 zneo 9544 xrlttri3 9989 qdceq 10459 flqltnz 10502 seqf1oglem1 10736 nn0opthd 10939 hashdifpr 11037 cats1un 11248 sumtp 11920 nninfctlemfo 12556 isprm2lem 12633 oddprm 12777 pcmpt 12861 ennnfonelemex 12980 perfectlem2 15668 lgsneg 15697 lgseisenlem4 15746 lgsquadlem1 15750 lgsquadlem3 15752 lgsquad2 15756 2lgsoddprm 15786 funvtxval0d 15828 umgrvad2edg 16003 |
| Copyright terms: Public domain | W3C validator |