| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | Unicode version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 |
|
| Ref | Expression |
|---|---|
| necomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 |
. 2
| |
| 2 | necom 2459 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-ne 2376 |
| This theorem is referenced by: ifnefals 3613 difsnb 3775 0nelop 4291 frecabcl 6484 fidifsnen 6966 tpfidisj 7025 omp1eomlem 7195 difinfsnlem 7200 fodjuomnilemdc 7245 en2eleq 7302 en2other2 7303 netap 7365 2omotaplemap 7368 ltned 8185 lt0ne0 8500 zdceq 9447 zneo 9473 xrlttri3 9918 qdceq 10385 flqltnz 10428 seqf1oglem1 10662 nn0opthd 10865 hashdifpr 10963 sumtp 11667 nninfctlemfo 12303 isprm2lem 12380 oddprm 12524 pcmpt 12608 ennnfonelemex 12727 perfectlem2 15414 lgsneg 15443 lgseisenlem4 15492 lgsquadlem1 15496 lgsquadlem3 15498 lgsquad2 15502 2lgsoddprm 15532 funvtxval0d 15572 |
| Copyright terms: Public domain | W3C validator |