| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | Unicode version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 |
|
| Ref | Expression |
|---|---|
| necomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 |
. 2
| |
| 2 | necom 2451 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: ifnefals 3604 difsnb 3766 0nelop 4282 frecabcl 6466 fidifsnen 6940 tpfidisj 6999 omp1eomlem 7169 difinfsnlem 7174 fodjuomnilemdc 7219 en2eleq 7274 en2other2 7275 netap 7337 2omotaplemap 7340 ltned 8157 lt0ne0 8472 zdceq 9418 zneo 9444 xrlttri3 9889 qdceq 10351 flqltnz 10394 seqf1oglem1 10628 nn0opthd 10831 hashdifpr 10929 sumtp 11596 nninfctlemfo 12232 isprm2lem 12309 oddprm 12453 pcmpt 12537 ennnfonelemex 12656 perfectlem2 15320 lgsneg 15349 lgseisenlem4 15398 lgsquadlem1 15402 lgsquadlem3 15404 lgsquad2 15408 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |