Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomd | Unicode version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 |
Ref | Expression |
---|---|
necomd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 | . 2 | |
2 | necom 2419 | . 2 | |
3 | 1, 2 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wne 2335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2336 |
This theorem is referenced by: difsnb 3715 0nelop 4225 frecabcl 6363 fidifsnen 6832 tpfidisj 6889 omp1eomlem 7055 difinfsnlem 7060 fodjuomnilemdc 7104 en2eleq 7147 en2other2 7148 ltned 8008 lt0ne0 8322 zdceq 9262 zneo 9288 xrlttri3 9729 qdceq 10178 flqltnz 10218 nn0opthd 10631 hashdifpr 10729 sumtp 11351 isprm2lem 12044 oddprm 12187 pcmpt 12269 ennnfonelemex 12343 lgsneg 13525 |
Copyright terms: Public domain | W3C validator |