ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomd Unicode version

Theorem necomd 2453
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
necomd  |-  ( ph  ->  B  =/=  A )

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2  |-  ( ph  ->  A  =/=  B )
2 necom 2451 . 2  |-  ( A  =/=  B  <->  B  =/=  A )
31, 2sylib 122 1  |-  ( ph  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    =/= wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-ne 2368
This theorem is referenced by:  ifnefals  3603  difsnb  3765  0nelop  4281  frecabcl  6457  fidifsnen  6931  tpfidisj  6990  omp1eomlem  7160  difinfsnlem  7165  fodjuomnilemdc  7210  en2eleq  7262  en2other2  7263  netap  7321  2omotaplemap  7324  ltned  8140  lt0ne0  8455  zdceq  9401  zneo  9427  xrlttri3  9872  qdceq  10334  flqltnz  10377  seqf1oglem1  10611  nn0opthd  10814  hashdifpr  10912  sumtp  11579  nninfctlemfo  12207  isprm2lem  12284  oddprm  12428  pcmpt  12512  ennnfonelemex  12631  perfectlem2  15236  lgsneg  15265  lgseisenlem4  15314  lgsquadlem1  15318  lgsquadlem3  15320  lgsquad2  15324  2lgsoddprm  15354
  Copyright terms: Public domain W3C validator