![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomd | Unicode version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | necom 2448 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 122 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: ifnefals 3600 difsnb 3762 0nelop 4278 frecabcl 6454 fidifsnen 6928 tpfidisj 6986 omp1eomlem 7155 difinfsnlem 7160 fodjuomnilemdc 7205 en2eleq 7257 en2other2 7258 netap 7316 2omotaplemap 7319 ltned 8135 lt0ne0 8449 zdceq 9395 zneo 9421 xrlttri3 9866 qdceq 10317 flqltnz 10359 seqf1oglem1 10593 nn0opthd 10796 hashdifpr 10894 sumtp 11560 nninfctlemfo 12180 isprm2lem 12257 oddprm 12400 pcmpt 12484 ennnfonelemex 12574 lgsneg 15181 lgseisenlem4 15230 lgsquadlem1 15234 lgsquadlem3 15236 lgsquad2 15240 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |