| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomd | Unicode version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 |
|
| Ref | Expression |
|---|---|
| necomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 |
. 2
| |
| 2 | necom 2461 |
. 2
| |
| 3 | 1, 2 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: ifnefals 3619 difsnb 3782 0nelop 4300 frecabcl 6498 fidifsnen 6982 tpfidisj 7041 omp1eomlem 7211 difinfsnlem 7216 fodjuomnilemdc 7261 en2eleq 7319 en2other2 7320 netap 7386 2omotaplemap 7389 ltned 8206 lt0ne0 8521 zdceq 9468 zneo 9494 xrlttri3 9939 qdceq 10409 flqltnz 10452 seqf1oglem1 10686 nn0opthd 10889 hashdifpr 10987 cats1un 11197 sumtp 11800 nninfctlemfo 12436 isprm2lem 12513 oddprm 12657 pcmpt 12741 ennnfonelemex 12860 perfectlem2 15547 lgsneg 15576 lgseisenlem4 15625 lgsquadlem1 15629 lgsquadlem3 15631 lgsquad2 15635 2lgsoddprm 15665 funvtxval0d 15707 |
| Copyright terms: Public domain | W3C validator |