![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomd | Unicode version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | necom 2448 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 122 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: ifnefals 3599 difsnb 3761 0nelop 4277 frecabcl 6452 fidifsnen 6926 tpfidisj 6984 omp1eomlem 7153 difinfsnlem 7158 fodjuomnilemdc 7203 en2eleq 7255 en2other2 7256 netap 7314 2omotaplemap 7317 ltned 8133 lt0ne0 8447 zdceq 9392 zneo 9418 xrlttri3 9863 qdceq 10314 flqltnz 10356 seqf1oglem1 10590 nn0opthd 10793 hashdifpr 10891 sumtp 11557 nninfctlemfo 12177 isprm2lem 12254 oddprm 12397 pcmpt 12481 ennnfonelemex 12571 lgsneg 15140 lgseisenlem4 15189 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |