ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelprd Unicode version

Theorem nelprd 3692
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Hypotheses
Ref Expression
nelprd.1  |-  ( ph  ->  A  =/=  B )
nelprd.2  |-  ( ph  ->  A  =/=  C )
Assertion
Ref Expression
nelprd  |-  ( ph  ->  -.  A  e.  { B ,  C }
)

Proof of Theorem nelprd
StepHypRef Expression
1 nelprd.1 . 2  |-  ( ph  ->  A  =/=  B )
2 nelprd.2 . 2  |-  ( ph  ->  A  =/=  C )
3 neanior 2487 . . 3  |-  ( ( A  =/=  B  /\  A  =/=  C )  <->  -.  ( A  =  B  \/  A  =  C )
)
4 elpri 3689 . . . 4  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
54con3i 635 . . 3  |-  ( -.  ( A  =  B  \/  A  =  C )  ->  -.  A  e.  { B ,  C } )
63, 5sylbi 121 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C )  ->  -.  A  e.  { B ,  C } )
71, 2, 6syl2anc 411 1  |-  ( ph  ->  -.  A  e.  { B ,  C }
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    =/= wne 2400   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  tpfidisj  7091  sumtp  11925  perfectlem2  15674
  Copyright terms: Public domain W3C validator