Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nelpri | Unicode version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
nelpri.1 | |
nelpri.2 |
Ref | Expression |
---|---|
nelpri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | . 2 | |
2 | nelpri.2 | . 2 | |
3 | neanior 2427 | . . 3 | |
4 | elpri 3606 | . . . 4 | |
5 | 4 | con3i 627 | . . 3 |
6 | 3, 5 | sylbi 120 | . 2 |
7 | 1, 2, 6 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 703 wceq 1348 wcel 2141 wne 2340 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: prneli 3608 pw1nel3 7208 sucpw1nel3 7210 |
Copyright terms: Public domain | W3C validator |