ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifpr Unicode version

Theorem eldifpr 3649
Description: Membership in a set with two elements removed. Similar to eldifsn 3749 and eldiftp 3668. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  A  =/= 
C  /\  A  =/=  D ) )

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 3642 . . . . 5  |-  ( A  e.  B  ->  ( A  e.  { C ,  D }  <->  ( A  =  C  \/  A  =  D ) ) )
21notbid 668 . . . 4  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D }  <->  -.  ( A  =  C  \/  A  =  D )
) )
3 neanior 2454 . . . 4  |-  ( ( A  =/=  C  /\  A  =/=  D )  <->  -.  ( A  =  C  \/  A  =  D )
)
42, 3bitr4di 198 . . 3  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D }  <->  ( A  =/=  C  /\  A  =/= 
D ) ) )
54pm5.32i 454 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  { C ,  D } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D ) ) )
6 eldif 3166 . 2  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  -.  A  e.  { C ,  D } ) )
7 3anass 984 . 2  |-  ( ( A  e.  B  /\  A  =/=  C  /\  A  =/=  D )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D ) ) )
85, 6, 73bitr4i 212 1  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  A  =/= 
C  /\  A  =/=  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  rexdifpr  3650  rplogbval  15181
  Copyright terms: Public domain W3C validator