ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifpr Unicode version

Theorem eldifpr 3603
Description: Membership in a set with two elements removed. Similar to eldifsn 3703 and eldiftp 3622. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  A  =/= 
C  /\  A  =/=  D ) )

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 3596 . . . . 5  |-  ( A  e.  B  ->  ( A  e.  { C ,  D }  <->  ( A  =  C  \/  A  =  D ) ) )
21notbid 657 . . . 4  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D }  <->  -.  ( A  =  C  \/  A  =  D )
) )
3 neanior 2423 . . . 4  |-  ( ( A  =/=  C  /\  A  =/=  D )  <->  -.  ( A  =  C  \/  A  =  D )
)
42, 3bitr4di 197 . . 3  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D }  <->  ( A  =/=  C  /\  A  =/= 
D ) ) )
54pm5.32i 450 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  { C ,  D } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D ) ) )
6 eldif 3125 . 2  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  -.  A  e.  { C ,  D } ) )
7 3anass 972 . 2  |-  ( ( A  e.  B  /\  A  =/=  C  /\  A  =/=  D )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D ) ) )
85, 6, 73bitr4i 211 1  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  A  =/= 
C  /\  A  =/=  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336    \ cdif 3113   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  rexdifpr  3604  rplogbval  13503
  Copyright terms: Public domain W3C validator