ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifpr Unicode version

Theorem eldifpr 3693
Description: Membership in a set with two elements removed. Similar to eldifsn 3795 and eldiftp 3712. (Contributed by Mario Carneiro, 18-Jul-2017.)
Assertion
Ref Expression
eldifpr  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  A  =/= 
C  /\  A  =/=  D ) )

Proof of Theorem eldifpr
StepHypRef Expression
1 elprg 3686 . . . . 5  |-  ( A  e.  B  ->  ( A  e.  { C ,  D }  <->  ( A  =  C  \/  A  =  D ) ) )
21notbid 671 . . . 4  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D }  <->  -.  ( A  =  C  \/  A  =  D )
) )
3 neanior 2487 . . . 4  |-  ( ( A  =/=  C  /\  A  =/=  D )  <->  -.  ( A  =  C  \/  A  =  D )
)
42, 3bitr4di 198 . . 3  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D }  <->  ( A  =/=  C  /\  A  =/= 
D ) ) )
54pm5.32i 454 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  { C ,  D } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D ) ) )
6 eldif 3206 . 2  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  -.  A  e.  { C ,  D } ) )
7 3anass 1006 . 2  |-  ( ( A  e.  B  /\  A  =/=  C  /\  A  =/=  D )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D ) ) )
85, 6, 73bitr4i 212 1  |-  ( A  e.  ( B  \  { C ,  D }
)  <->  ( A  e.  B  /\  A  =/= 
C  /\  A  =/=  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400    \ cdif 3194   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  rexdifpr  3694  rplogbval  15619
  Copyright terms: Public domain W3C validator