ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcd Unicode version

Theorem lcmgcd 12032
Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which  ( M  gcd  N
)  =  1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 11966; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 11966 and https://math.stackexchange.com/a/470827 11966. This proof uses the latter to first confirm it for positive integers  M and 
N (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 12019 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

Assertion
Ref Expression
lcmgcd  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 11921 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
21nn0cnd 9190 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
32mul02d 8311 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
4 0z 9223 . . . . . . . . . 10  |-  0  e.  ZZ
5 lcmcom 12018 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
64, 5mpan2 423 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
7 lcm0val 12019 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
86, 7eqtr3d 2205 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
98adantl 275 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  0 )
109oveq1d 5868 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
11 zcn 9217 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantl 275 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1312mul02d 8311 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
1413abs00bd 11030 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
0  x.  N ) )  =  0 )
153, 10, 143eqtr4d 2213 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  (
0  x.  N ) ) )
1615adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( (
0 lcm  N )  x.  ( M  gcd  N
) )  =  ( abs `  ( 0  x.  N ) ) )
17 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
1817oveq1d 5868 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( 0 lcm 
N ) )
1918oveq1d 5868 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( 0 lcm 
N )  x.  ( M  gcd  N ) ) )
2017oveq1d 5868 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2120fveq2d 5500 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( 0  x.  N ) ) )
2216, 19, 213eqtr4d 2213 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
23 lcm0val 12019 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2423adantr 274 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  0 )  =  0 )
2524oveq1d 5868 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
26 zcn 9217 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
2726adantr 274 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
2827mul01d 8312 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
2928abs00bd 11030 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  0 ) )  =  0 )
303, 25, 293eqtr4d 2213 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
3130adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  0 )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
32 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  N  = 
0 )
3332oveq2d 5869 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  0 ) )
3433oveq1d 5868 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( M lcm  0 )  x.  ( M  gcd  N ) ) )
3532oveq2d 5869 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3635fveq2d 5500 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( M  x.  0 ) ) )
3731, 34, 363eqtr4d 2213 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
3822, 37jaodan 792 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
39 neanior 2427 . . . . 5  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
40 nnabscl 11064 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
41 nnabscl 11064 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4240, 41anim12i 336 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4342an4s 583 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4439, 43sylan2br 286 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  e.  NN  /\  ( abs `  N
)  e.  NN ) )
45 lcmgcdlem 12031 . . . . 5  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( 0  e.  NN  /\  (
( abs `  M
)  ||  0  /\  ( abs `  N ) 
||  0 ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  0 ) ) )
4645simpld 111 . . . 4  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
4744, 46syl 14 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
48 lcmabs 12030 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
49 gcdabs 11943 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
5048, 49oveq12d 5871 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
5150adantr 274 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
52 absidm 11062 . . . . . . 7  |-  ( M  e.  CC  ->  ( abs `  ( abs `  M
) )  =  ( abs `  M ) )
53 absidm 11062 . . . . . . 7  |-  ( N  e.  CC  ->  ( abs `  ( abs `  N
) )  =  ( abs `  N ) )
5452, 53oveqan12d 5872 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
5526, 11, 54syl2an 287 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
56 nn0abscl 11049 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
5756nn0cnd 9190 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  CC )
5857adantr 274 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M
)  e.  CC )
59 nn0abscl 11049 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
6059nn0cnd 9190 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  CC )
6160adantl 275 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  N
)  e.  CC )
6258, 61absmuld 11158 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( ( abs `  ( abs `  M
) )  x.  ( abs `  ( abs `  N
) ) ) )
6327, 12absmuld 11158 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
6455, 62, 633eqtr4d 2213 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6564adantr 274 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6647, 51, 653eqtr3d 2211 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
67 lcmmndc 12016 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
68 exmiddc 831 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
6967, 68syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7038, 66, 69mpjaodan 793 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774    x. cmul 7779   NNcn 8878   ZZcz 9212   abscabs 10961    || cdvds 11749    gcd cgcd 11897   lcm clcm 12014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-lcm 12015
This theorem is referenced by:  lcmid  12034  lcm1  12035  lcmgcdnn  12036
  Copyright terms: Public domain W3C validator