ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcd Unicode version

Theorem lcmgcd 12400
Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which  ( M  gcd  N
)  =  1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 12332; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12332 and https://math.stackexchange.com/a/470827 12332. This proof uses the latter to first confirm it for positive integers  M and 
N (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 12387 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

Assertion
Ref Expression
lcmgcd  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 12287 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
21nn0cnd 9350 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
32mul02d 8464 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
4 0z 9383 . . . . . . . . . 10  |-  0  e.  ZZ
5 lcmcom 12386 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
64, 5mpan2 425 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
7 lcm0val 12387 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
86, 7eqtr3d 2240 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
98adantl 277 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  0 )
109oveq1d 5959 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
11 zcn 9377 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantl 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1312mul02d 8464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
1413abs00bd 11377 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
0  x.  N ) )  =  0 )
153, 10, 143eqtr4d 2248 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  (
0  x.  N ) ) )
1615adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( (
0 lcm  N )  x.  ( M  gcd  N
) )  =  ( abs `  ( 0  x.  N ) ) )
17 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
1817oveq1d 5959 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( 0 lcm 
N ) )
1918oveq1d 5959 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( 0 lcm 
N )  x.  ( M  gcd  N ) ) )
2017oveq1d 5959 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2120fveq2d 5580 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( 0  x.  N ) ) )
2216, 19, 213eqtr4d 2248 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
23 lcm0val 12387 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2423adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  0 )  =  0 )
2524oveq1d 5959 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
26 zcn 9377 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
2726adantr 276 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
2827mul01d 8465 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
2928abs00bd 11377 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  0 ) )  =  0 )
303, 25, 293eqtr4d 2248 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
3130adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  0 )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
32 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  N  = 
0 )
3332oveq2d 5960 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  0 ) )
3433oveq1d 5959 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( M lcm  0 )  x.  ( M  gcd  N ) ) )
3532oveq2d 5960 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3635fveq2d 5580 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( M  x.  0 ) ) )
3731, 34, 363eqtr4d 2248 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
3822, 37jaodan 799 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
39 neanior 2463 . . . . 5  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
40 nnabscl 11411 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
41 nnabscl 11411 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4240, 41anim12i 338 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4342an4s 588 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4439, 43sylan2br 288 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  e.  NN  /\  ( abs `  N
)  e.  NN ) )
45 lcmgcdlem 12399 . . . . 5  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( 0  e.  NN  /\  (
( abs `  M
)  ||  0  /\  ( abs `  N ) 
||  0 ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  0 ) ) )
4645simpld 112 . . . 4  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
4744, 46syl 14 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
48 lcmabs 12398 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
49 gcdabs 12309 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
5048, 49oveq12d 5962 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
5150adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
52 absidm 11409 . . . . . . 7  |-  ( M  e.  CC  ->  ( abs `  ( abs `  M
) )  =  ( abs `  M ) )
53 absidm 11409 . . . . . . 7  |-  ( N  e.  CC  ->  ( abs `  ( abs `  N
) )  =  ( abs `  N ) )
5452, 53oveqan12d 5963 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
5526, 11, 54syl2an 289 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
56 nn0abscl 11396 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
5756nn0cnd 9350 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  CC )
5857adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M
)  e.  CC )
59 nn0abscl 11396 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
6059nn0cnd 9350 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  CC )
6160adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  N
)  e.  CC )
6258, 61absmuld 11505 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( ( abs `  ( abs `  M
) )  x.  ( abs `  ( abs `  N
) ) ) )
6327, 12absmuld 11505 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
6455, 62, 633eqtr4d 2248 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6564adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6647, 51, 653eqtr3d 2246 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
67 lcmmndc 12384 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
68 exmiddc 838 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
6967, 68syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7038, 66, 69mpjaodan 800 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925    x. cmul 7930   NNcn 9036   ZZcz 9372   abscabs 11308    || cdvds 12098    gcd cgcd 12274   lcm clcm 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-lcm 12383
This theorem is referenced by:  lcmid  12402  lcm1  12403  lcmgcdnn  12404
  Copyright terms: Public domain W3C validator