ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcd Unicode version

Theorem lcmgcd 12371
Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which  ( M  gcd  N
)  =  1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 12303; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12303 and https://math.stackexchange.com/a/470827 12303. This proof uses the latter to first confirm it for positive integers  M and 
N (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 12358 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

Assertion
Ref Expression
lcmgcd  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 12258 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
21nn0cnd 9349 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
32mul02d 8463 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
4 0z 9382 . . . . . . . . . 10  |-  0  e.  ZZ
5 lcmcom 12357 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
64, 5mpan2 425 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
7 lcm0val 12358 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
86, 7eqtr3d 2239 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
98adantl 277 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  0 )
109oveq1d 5958 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
11 zcn 9376 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantl 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1312mul02d 8463 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
1413abs00bd 11348 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
0  x.  N ) )  =  0 )
153, 10, 143eqtr4d 2247 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  (
0  x.  N ) ) )
1615adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( (
0 lcm  N )  x.  ( M  gcd  N
) )  =  ( abs `  ( 0  x.  N ) ) )
17 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
1817oveq1d 5958 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( 0 lcm 
N ) )
1918oveq1d 5958 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( 0 lcm 
N )  x.  ( M  gcd  N ) ) )
2017oveq1d 5958 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2120fveq2d 5579 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( 0  x.  N ) ) )
2216, 19, 213eqtr4d 2247 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
23 lcm0val 12358 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2423adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  0 )  =  0 )
2524oveq1d 5958 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
26 zcn 9376 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
2726adantr 276 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
2827mul01d 8464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
2928abs00bd 11348 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  0 ) )  =  0 )
303, 25, 293eqtr4d 2247 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
3130adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  0 )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
32 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  N  = 
0 )
3332oveq2d 5959 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  0 ) )
3433oveq1d 5958 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( M lcm  0 )  x.  ( M  gcd  N ) ) )
3532oveq2d 5959 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3635fveq2d 5579 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( M  x.  0 ) ) )
3731, 34, 363eqtr4d 2247 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
3822, 37jaodan 798 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
39 neanior 2462 . . . . 5  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
40 nnabscl 11382 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
41 nnabscl 11382 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4240, 41anim12i 338 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4342an4s 588 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4439, 43sylan2br 288 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  e.  NN  /\  ( abs `  N
)  e.  NN ) )
45 lcmgcdlem 12370 . . . . 5  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( 0  e.  NN  /\  (
( abs `  M
)  ||  0  /\  ( abs `  N ) 
||  0 ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  0 ) ) )
4645simpld 112 . . . 4  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
4744, 46syl 14 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
48 lcmabs 12369 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
49 gcdabs 12280 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
5048, 49oveq12d 5961 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
5150adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
52 absidm 11380 . . . . . . 7  |-  ( M  e.  CC  ->  ( abs `  ( abs `  M
) )  =  ( abs `  M ) )
53 absidm 11380 . . . . . . 7  |-  ( N  e.  CC  ->  ( abs `  ( abs `  N
) )  =  ( abs `  N ) )
5452, 53oveqan12d 5962 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
5526, 11, 54syl2an 289 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
56 nn0abscl 11367 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
5756nn0cnd 9349 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  CC )
5857adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M
)  e.  CC )
59 nn0abscl 11367 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
6059nn0cnd 9349 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  CC )
6160adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  N
)  e.  CC )
6258, 61absmuld 11476 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( ( abs `  ( abs `  M
) )  x.  ( abs `  ( abs `  N
) ) ) )
6327, 12absmuld 11476 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
6455, 62, 633eqtr4d 2247 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6564adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6647, 51, 653eqtr3d 2245 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
67 lcmmndc 12355 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
68 exmiddc 837 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
6967, 68syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7038, 66, 69mpjaodan 799 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1372    e. wcel 2175    =/= wne 2375   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   0cc0 7924    x. cmul 7929   NNcn 9035   ZZcz 9371   abscabs 11279    || cdvds 12069    gcd cgcd 12245   lcm clcm 12353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-dvds 12070  df-gcd 12246  df-lcm 12354
This theorem is referenced by:  lcmid  12373  lcm1  12374  lcmgcdnn  12375
  Copyright terms: Public domain W3C validator