Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version |
Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which .
Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 11966; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 11966 and https://math.stackexchange.com/a/470827 11966. This proof uses the latter to first confirm it for positive integers and (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 12019 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
lcmgcd | lcm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcl 11921 | . . . . . . . 8 | |
2 | 1 | nn0cnd 9190 | . . . . . . 7 |
3 | 2 | mul02d 8311 | . . . . . 6 |
4 | 0z 9223 | . . . . . . . . . 10 | |
5 | lcmcom 12018 | . . . . . . . . . 10 lcm lcm | |
6 | 4, 5 | mpan2 423 | . . . . . . . . 9 lcm lcm |
7 | lcm0val 12019 | . . . . . . . . 9 lcm | |
8 | 6, 7 | eqtr3d 2205 | . . . . . . . 8 lcm |
9 | 8 | adantl 275 | . . . . . . 7 lcm |
10 | 9 | oveq1d 5868 | . . . . . 6 lcm |
11 | zcn 9217 | . . . . . . . . 9 | |
12 | 11 | adantl 275 | . . . . . . . 8 |
13 | 12 | mul02d 8311 | . . . . . . 7 |
14 | 13 | abs00bd 11030 | . . . . . 6 |
15 | 3, 10, 14 | 3eqtr4d 2213 | . . . . 5 lcm |
16 | 15 | adantr 274 | . . . 4 lcm |
17 | simpr 109 | . . . . . 6 | |
18 | 17 | oveq1d 5868 | . . . . 5 lcm lcm |
19 | 18 | oveq1d 5868 | . . . 4 lcm lcm |
20 | 17 | oveq1d 5868 | . . . . 5 |
21 | 20 | fveq2d 5500 | . . . 4 |
22 | 16, 19, 21 | 3eqtr4d 2213 | . . 3 lcm |
23 | lcm0val 12019 | . . . . . . . 8 lcm | |
24 | 23 | adantr 274 | . . . . . . 7 lcm |
25 | 24 | oveq1d 5868 | . . . . . 6 lcm |
26 | zcn 9217 | . . . . . . . . 9 | |
27 | 26 | adantr 274 | . . . . . . . 8 |
28 | 27 | mul01d 8312 | . . . . . . 7 |
29 | 28 | abs00bd 11030 | . . . . . 6 |
30 | 3, 25, 29 | 3eqtr4d 2213 | . . . . 5 lcm |
31 | 30 | adantr 274 | . . . 4 lcm |
32 | simpr 109 | . . . . . 6 | |
33 | 32 | oveq2d 5869 | . . . . 5 lcm lcm |
34 | 33 | oveq1d 5868 | . . . 4 lcm lcm |
35 | 32 | oveq2d 5869 | . . . . 5 |
36 | 35 | fveq2d 5500 | . . . 4 |
37 | 31, 34, 36 | 3eqtr4d 2213 | . . 3 lcm |
38 | 22, 37 | jaodan 792 | . 2 lcm |
39 | neanior 2427 | . . . . 5 | |
40 | nnabscl 11064 | . . . . . . 7 | |
41 | nnabscl 11064 | . . . . . . 7 | |
42 | 40, 41 | anim12i 336 | . . . . . 6 |
43 | 42 | an4s 583 | . . . . 5 |
44 | 39, 43 | sylan2br 286 | . . . 4 |
45 | lcmgcdlem 12031 | . . . . 5 lcm lcm | |
46 | 45 | simpld 111 | . . . 4 lcm |
47 | 44, 46 | syl 14 | . . 3 lcm |
48 | lcmabs 12030 | . . . . 5 lcm lcm | |
49 | gcdabs 11943 | . . . . 5 | |
50 | 48, 49 | oveq12d 5871 | . . . 4 lcm lcm |
51 | 50 | adantr 274 | . . 3 lcm lcm |
52 | absidm 11062 | . . . . . . 7 | |
53 | absidm 11062 | . . . . . . 7 | |
54 | 52, 53 | oveqan12d 5872 | . . . . . 6 |
55 | 26, 11, 54 | syl2an 287 | . . . . 5 |
56 | nn0abscl 11049 | . . . . . . . 8 | |
57 | 56 | nn0cnd 9190 | . . . . . . 7 |
58 | 57 | adantr 274 | . . . . . 6 |
59 | nn0abscl 11049 | . . . . . . . 8 | |
60 | 59 | nn0cnd 9190 | . . . . . . 7 |
61 | 60 | adantl 275 | . . . . . 6 |
62 | 58, 61 | absmuld 11158 | . . . . 5 |
63 | 27, 12 | absmuld 11158 | . . . . 5 |
64 | 55, 62, 63 | 3eqtr4d 2213 | . . . 4 |
65 | 64 | adantr 274 | . . 3 |
66 | 47, 51, 65 | 3eqtr3d 2211 | . 2 lcm |
67 | lcmmndc 12016 | . . 3 DECID | |
68 | exmiddc 831 | . . 3 DECID | |
69 | 67, 68 | syl 14 | . 2 |
70 | 38, 66, 69 | mpjaodan 793 | 1 lcm |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 cc0 7774 cmul 7779 cn 8878 cz 9212 cabs 10961 cdvds 11749 cgcd 11897 lcm clcm 12014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-gcd 11898 df-lcm 12015 |
This theorem is referenced by: lcmid 12034 lcm1 12035 lcmgcdnn 12036 |
Copyright terms: Public domain | W3C validator |