| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version | ||
| Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which
Multiple methods exist for proving this, and it is often proven either as
a consequence of the fundamental theorem of arithmetic or of
Bézout's identity bezout 12303; see, e.g.,
https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12303 and
https://math.stackexchange.com/a/470827 12303. This proof uses the latter to
first confirm it for positive integers |
| Ref | Expression |
|---|---|
| lcmgcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl 12258 |
. . . . . . . 8
| |
| 2 | 1 | nn0cnd 9349 |
. . . . . . 7
|
| 3 | 2 | mul02d 8463 |
. . . . . 6
|
| 4 | 0z 9382 |
. . . . . . . . . 10
| |
| 5 | lcmcom 12357 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . . 9
|
| 7 | lcm0val 12358 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqtr3d 2239 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | oveq1d 5958 |
. . . . . 6
|
| 11 | zcn 9376 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | mul02d 8463 |
. . . . . . 7
|
| 14 | 13 | abs00bd 11348 |
. . . . . 6
|
| 15 | 3, 10, 14 | 3eqtr4d 2247 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . 6
| |
| 18 | 17 | oveq1d 5958 |
. . . . 5
|
| 19 | 18 | oveq1d 5958 |
. . . 4
|
| 20 | 17 | oveq1d 5958 |
. . . . 5
|
| 21 | 20 | fveq2d 5579 |
. . . 4
|
| 22 | 16, 19, 21 | 3eqtr4d 2247 |
. . 3
|
| 23 | lcm0val 12358 |
. . . . . . . 8
| |
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 24 | oveq1d 5958 |
. . . . . 6
|
| 26 | zcn 9376 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 27 | mul01d 8464 |
. . . . . . 7
|
| 29 | 28 | abs00bd 11348 |
. . . . . 6
|
| 30 | 3, 25, 29 | 3eqtr4d 2247 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 32 | oveq2d 5959 |
. . . . 5
|
| 34 | 33 | oveq1d 5958 |
. . . 4
|
| 35 | 32 | oveq2d 5959 |
. . . . 5
|
| 36 | 35 | fveq2d 5579 |
. . . 4
|
| 37 | 31, 34, 36 | 3eqtr4d 2247 |
. . 3
|
| 38 | 22, 37 | jaodan 798 |
. 2
|
| 39 | neanior 2462 |
. . . . 5
| |
| 40 | nnabscl 11382 |
. . . . . . 7
| |
| 41 | nnabscl 11382 |
. . . . . . 7
| |
| 42 | 40, 41 | anim12i 338 |
. . . . . 6
|
| 43 | 42 | an4s 588 |
. . . . 5
|
| 44 | 39, 43 | sylan2br 288 |
. . . 4
|
| 45 | lcmgcdlem 12370 |
. . . . 5
| |
| 46 | 45 | simpld 112 |
. . . 4
|
| 47 | 44, 46 | syl 14 |
. . 3
|
| 48 | lcmabs 12369 |
. . . . 5
| |
| 49 | gcdabs 12280 |
. . . . 5
| |
| 50 | 48, 49 | oveq12d 5961 |
. . . 4
|
| 51 | 50 | adantr 276 |
. . 3
|
| 52 | absidm 11380 |
. . . . . . 7
| |
| 53 | absidm 11380 |
. . . . . . 7
| |
| 54 | 52, 53 | oveqan12d 5962 |
. . . . . 6
|
| 55 | 26, 11, 54 | syl2an 289 |
. . . . 5
|
| 56 | nn0abscl 11367 |
. . . . . . . 8
| |
| 57 | 56 | nn0cnd 9349 |
. . . . . . 7
|
| 58 | 57 | adantr 276 |
. . . . . 6
|
| 59 | nn0abscl 11367 |
. . . . . . . 8
| |
| 60 | 59 | nn0cnd 9349 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 58, 61 | absmuld 11476 |
. . . . 5
|
| 63 | 27, 12 | absmuld 11476 |
. . . . 5
|
| 64 | 55, 62, 63 | 3eqtr4d 2247 |
. . . 4
|
| 65 | 64 | adantr 276 |
. . 3
|
| 66 | 47, 51, 65 | 3eqtr3d 2245 |
. 2
|
| 67 | lcmmndc 12355 |
. . 3
| |
| 68 | exmiddc 837 |
. . 3
| |
| 69 | 67, 68 | syl 14 |
. 2
|
| 70 | 38, 66, 69 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-fl 10411 df-mod 10466 df-seqfrec 10591 df-exp 10682 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-dvds 12070 df-gcd 12246 df-lcm 12354 |
| This theorem is referenced by: lcmid 12373 lcm1 12374 lcmgcdnn 12375 |
| Copyright terms: Public domain | W3C validator |