| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version | ||
| Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which
Multiple methods exist for proving this, and it is often proven either as
a consequence of the fundamental theorem of arithmetic or of
Bézout's identity bezout 12203; see, e.g.,
https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12203 and
https://math.stackexchange.com/a/470827 12203. This proof uses the latter to
first confirm it for positive integers |
| Ref | Expression |
|---|---|
| lcmgcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl 12158 |
. . . . . . . 8
| |
| 2 | 1 | nn0cnd 9321 |
. . . . . . 7
|
| 3 | 2 | mul02d 8435 |
. . . . . 6
|
| 4 | 0z 9354 |
. . . . . . . . . 10
| |
| 5 | lcmcom 12257 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . . 9
|
| 7 | lcm0val 12258 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqtr3d 2231 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | oveq1d 5940 |
. . . . . 6
|
| 11 | zcn 9348 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | mul02d 8435 |
. . . . . . 7
|
| 14 | 13 | abs00bd 11248 |
. . . . . 6
|
| 15 | 3, 10, 14 | 3eqtr4d 2239 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . 6
| |
| 18 | 17 | oveq1d 5940 |
. . . . 5
|
| 19 | 18 | oveq1d 5940 |
. . . 4
|
| 20 | 17 | oveq1d 5940 |
. . . . 5
|
| 21 | 20 | fveq2d 5565 |
. . . 4
|
| 22 | 16, 19, 21 | 3eqtr4d 2239 |
. . 3
|
| 23 | lcm0val 12258 |
. . . . . . . 8
| |
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 24 | oveq1d 5940 |
. . . . . 6
|
| 26 | zcn 9348 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 27 | mul01d 8436 |
. . . . . . 7
|
| 29 | 28 | abs00bd 11248 |
. . . . . 6
|
| 30 | 3, 25, 29 | 3eqtr4d 2239 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 32 | oveq2d 5941 |
. . . . 5
|
| 34 | 33 | oveq1d 5940 |
. . . 4
|
| 35 | 32 | oveq2d 5941 |
. . . . 5
|
| 36 | 35 | fveq2d 5565 |
. . . 4
|
| 37 | 31, 34, 36 | 3eqtr4d 2239 |
. . 3
|
| 38 | 22, 37 | jaodan 798 |
. 2
|
| 39 | neanior 2454 |
. . . . 5
| |
| 40 | nnabscl 11282 |
. . . . . . 7
| |
| 41 | nnabscl 11282 |
. . . . . . 7
| |
| 42 | 40, 41 | anim12i 338 |
. . . . . 6
|
| 43 | 42 | an4s 588 |
. . . . 5
|
| 44 | 39, 43 | sylan2br 288 |
. . . 4
|
| 45 | lcmgcdlem 12270 |
. . . . 5
| |
| 46 | 45 | simpld 112 |
. . . 4
|
| 47 | 44, 46 | syl 14 |
. . 3
|
| 48 | lcmabs 12269 |
. . . . 5
| |
| 49 | gcdabs 12180 |
. . . . 5
| |
| 50 | 48, 49 | oveq12d 5943 |
. . . 4
|
| 51 | 50 | adantr 276 |
. . 3
|
| 52 | absidm 11280 |
. . . . . . 7
| |
| 53 | absidm 11280 |
. . . . . . 7
| |
| 54 | 52, 53 | oveqan12d 5944 |
. . . . . 6
|
| 55 | 26, 11, 54 | syl2an 289 |
. . . . 5
|
| 56 | nn0abscl 11267 |
. . . . . . . 8
| |
| 57 | 56 | nn0cnd 9321 |
. . . . . . 7
|
| 58 | 57 | adantr 276 |
. . . . . 6
|
| 59 | nn0abscl 11267 |
. . . . . . . 8
| |
| 60 | 59 | nn0cnd 9321 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 58, 61 | absmuld 11376 |
. . . . 5
|
| 63 | 27, 12 | absmuld 11376 |
. . . . 5
|
| 64 | 55, 62, 63 | 3eqtr4d 2239 |
. . . 4
|
| 65 | 64 | adantr 276 |
. . 3
|
| 66 | 47, 51, 65 | 3eqtr3d 2237 |
. 2
|
| 67 | lcmmndc 12255 |
. . 3
| |
| 68 | exmiddc 837 |
. . 3
| |
| 69 | 67, 68 | syl 14 |
. 2
|
| 70 | 38, 66, 69 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 df-lcm 12254 |
| This theorem is referenced by: lcmid 12273 lcm1 12274 lcmgcdnn 12275 |
| Copyright terms: Public domain | W3C validator |