ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcd Unicode version

Theorem lcmgcd 12080
Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute value is the least common multiple of two coprime numbers, for which  ( M  gcd  N
)  =  1.

Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 12014; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12014 and https://math.stackexchange.com/a/470827 12014. This proof uses the latter to first confirm it for positive integers  M and 
N (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 12067 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)

Assertion
Ref Expression
lcmgcd  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )

Proof of Theorem lcmgcd
StepHypRef Expression
1 gcdcl 11969 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
21nn0cnd 9233 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
32mul02d 8351 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
4 0z 9266 . . . . . . . . . 10  |-  0  e.  ZZ
5 lcmcom 12066 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
64, 5mpan2 425 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
7 lcm0val 12067 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
86, 7eqtr3d 2212 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
98adantl 277 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  0 )
109oveq1d 5892 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
11 zcn 9260 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantl 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1312mul02d 8351 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
1413abs00bd 11077 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
0  x.  N ) )  =  0 )
153, 10, 143eqtr4d 2220 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0 lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  (
0  x.  N ) ) )
1615adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( (
0 lcm  N )  x.  ( M  gcd  N
) )  =  ( abs `  ( 0  x.  N ) ) )
17 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
1817oveq1d 5892 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( 0 lcm 
N ) )
1918oveq1d 5892 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( 0 lcm 
N )  x.  ( M  gcd  N ) ) )
2017oveq1d 5892 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2120fveq2d 5521 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( 0  x.  N ) ) )
2216, 19, 213eqtr4d 2220 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
23 lcm0val 12067 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2423adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  0 )  =  0 )
2524oveq1d 5892 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
26 zcn 9260 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
2726adantr 276 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
2827mul01d 8352 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
2928abs00bd 11077 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  0 ) )  =  0 )
303, 25, 293eqtr4d 2220 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  0
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
3130adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  0 )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  0 ) ) )
32 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  N  = 
0 )
3332oveq2d 5893 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  0 ) )
3433oveq1d 5892 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( ( M lcm  0 )  x.  ( M  gcd  N ) ) )
3532oveq2d 5893 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3635fveq2d 5521 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( abs `  ( M  x.  N
) )  =  ( abs `  ( M  x.  0 ) ) )
3731, 34, 363eqtr4d 2220 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( M lcm  N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
3822, 37jaodan 797 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
39 neanior 2434 . . . . 5  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
40 nnabscl 11111 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
41 nnabscl 11111 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
4240, 41anim12i 338 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4342an4s 588 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN ) )
4439, 43sylan2br 288 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  e.  NN  /\  ( abs `  N
)  e.  NN ) )
45 lcmgcdlem 12079 . . . . 5  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( 0  e.  NN  /\  (
( abs `  M
)  ||  0  /\  ( abs `  N ) 
||  0 ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  0 ) ) )
4645simpld 112 . . . 4  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
4744, 46syl 14 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) ) )
48 lcmabs 12078 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
49 gcdabs 11991 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
5048, 49oveq12d 5895 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  x.  ( ( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
5150adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( ( M lcm 
N )  x.  ( M  gcd  N ) ) )
52 absidm 11109 . . . . . . 7  |-  ( M  e.  CC  ->  ( abs `  ( abs `  M
) )  =  ( abs `  M ) )
53 absidm 11109 . . . . . . 7  |-  ( N  e.  CC  ->  ( abs `  ( abs `  N
) )  =  ( abs `  N ) )
5452, 53oveqan12d 5896 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
5526, 11, 54syl2an 289 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( abs `  M ) )  x.  ( abs `  ( abs `  N ) ) )  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
56 nn0abscl 11096 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
5756nn0cnd 9233 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  CC )
5857adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M
)  e.  CC )
59 nn0abscl 11096 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
6059nn0cnd 9233 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  CC )
6160adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  N
)  e.  CC )
6258, 61absmuld 11205 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( ( abs `  ( abs `  M
) )  x.  ( abs `  ( abs `  N
) ) ) )
6327, 12absmuld 11205 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
6455, 62, 633eqtr4d 2220 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6564adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  =  ( abs `  ( M  x.  N )
) )
6647, 51, 653eqtr3d 2218 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
67 lcmmndc 12064 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
68 exmiddc 836 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
6967, 68syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7038, 66, 69mpjaodan 798 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  x.  ( M  gcd  N ) )  =  ( abs `  ( M  x.  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813    x. cmul 7818   NNcn 8921   ZZcz 9255   abscabs 11008    || cdvds 11796    gcd cgcd 11945   lcm clcm 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-lcm 12063
This theorem is referenced by:  lcmid  12082  lcm1  12083  lcmgcdnn  12084
  Copyright terms: Public domain W3C validator