| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version | ||
| Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which
Multiple methods exist for proving this, and it is often proven either as
a consequence of the fundamental theorem of arithmetic or of
Bézout's identity bezout 12527; see, e.g.,
https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12527 and
https://math.stackexchange.com/a/470827 12527. This proof uses the latter to
first confirm it for positive integers |
| Ref | Expression |
|---|---|
| lcmgcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl 12482 |
. . . . . . . 8
| |
| 2 | 1 | nn0cnd 9420 |
. . . . . . 7
|
| 3 | 2 | mul02d 8534 |
. . . . . 6
|
| 4 | 0z 9453 |
. . . . . . . . . 10
| |
| 5 | lcmcom 12581 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . . 9
|
| 7 | lcm0val 12582 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqtr3d 2264 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | oveq1d 6015 |
. . . . . 6
|
| 11 | zcn 9447 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | mul02d 8534 |
. . . . . . 7
|
| 14 | 13 | abs00bd 11572 |
. . . . . 6
|
| 15 | 3, 10, 14 | 3eqtr4d 2272 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . 6
| |
| 18 | 17 | oveq1d 6015 |
. . . . 5
|
| 19 | 18 | oveq1d 6015 |
. . . 4
|
| 20 | 17 | oveq1d 6015 |
. . . . 5
|
| 21 | 20 | fveq2d 5630 |
. . . 4
|
| 22 | 16, 19, 21 | 3eqtr4d 2272 |
. . 3
|
| 23 | lcm0val 12582 |
. . . . . . . 8
| |
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 24 | oveq1d 6015 |
. . . . . 6
|
| 26 | zcn 9447 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 27 | mul01d 8535 |
. . . . . . 7
|
| 29 | 28 | abs00bd 11572 |
. . . . . 6
|
| 30 | 3, 25, 29 | 3eqtr4d 2272 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 32 | oveq2d 6016 |
. . . . 5
|
| 34 | 33 | oveq1d 6015 |
. . . 4
|
| 35 | 32 | oveq2d 6016 |
. . . . 5
|
| 36 | 35 | fveq2d 5630 |
. . . 4
|
| 37 | 31, 34, 36 | 3eqtr4d 2272 |
. . 3
|
| 38 | 22, 37 | jaodan 802 |
. 2
|
| 39 | neanior 2487 |
. . . . 5
| |
| 40 | nnabscl 11606 |
. . . . . . 7
| |
| 41 | nnabscl 11606 |
. . . . . . 7
| |
| 42 | 40, 41 | anim12i 338 |
. . . . . 6
|
| 43 | 42 | an4s 590 |
. . . . 5
|
| 44 | 39, 43 | sylan2br 288 |
. . . 4
|
| 45 | lcmgcdlem 12594 |
. . . . 5
| |
| 46 | 45 | simpld 112 |
. . . 4
|
| 47 | 44, 46 | syl 14 |
. . 3
|
| 48 | lcmabs 12593 |
. . . . 5
| |
| 49 | gcdabs 12504 |
. . . . 5
| |
| 50 | 48, 49 | oveq12d 6018 |
. . . 4
|
| 51 | 50 | adantr 276 |
. . 3
|
| 52 | absidm 11604 |
. . . . . . 7
| |
| 53 | absidm 11604 |
. . . . . . 7
| |
| 54 | 52, 53 | oveqan12d 6019 |
. . . . . 6
|
| 55 | 26, 11, 54 | syl2an 289 |
. . . . 5
|
| 56 | nn0abscl 11591 |
. . . . . . . 8
| |
| 57 | 56 | nn0cnd 9420 |
. . . . . . 7
|
| 58 | 57 | adantr 276 |
. . . . . 6
|
| 59 | nn0abscl 11591 |
. . . . . . . 8
| |
| 60 | 59 | nn0cnd 9420 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 58, 61 | absmuld 11700 |
. . . . 5
|
| 63 | 27, 12 | absmuld 11700 |
. . . . 5
|
| 64 | 55, 62, 63 | 3eqtr4d 2272 |
. . . 4
|
| 65 | 64 | adantr 276 |
. . 3
|
| 66 | 47, 51, 65 | 3eqtr3d 2270 |
. 2
|
| 67 | lcmmndc 12579 |
. . 3
| |
| 68 | exmiddc 841 |
. . 3
| |
| 69 | 67, 68 | syl 14 |
. 2
|
| 70 | 38, 66, 69 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-gcd 12470 df-lcm 12578 |
| This theorem is referenced by: lcmid 12597 lcm1 12598 lcmgcdnn 12599 |
| Copyright terms: Public domain | W3C validator |