Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version |
Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which .
Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic or of Bézout's identity bezout 11944; see, e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 11944 and https://math.stackexchange.com/a/470827 11944. This proof uses the latter to first confirm it for positive integers and (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 11997 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
lcmgcd | lcm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcl 11899 | . . . . . . . 8 | |
2 | 1 | nn0cnd 9169 | . . . . . . 7 |
3 | 2 | mul02d 8290 | . . . . . 6 |
4 | 0z 9202 | . . . . . . . . . 10 | |
5 | lcmcom 11996 | . . . . . . . . . 10 lcm lcm | |
6 | 4, 5 | mpan2 422 | . . . . . . . . 9 lcm lcm |
7 | lcm0val 11997 | . . . . . . . . 9 lcm | |
8 | 6, 7 | eqtr3d 2200 | . . . . . . . 8 lcm |
9 | 8 | adantl 275 | . . . . . . 7 lcm |
10 | 9 | oveq1d 5857 | . . . . . 6 lcm |
11 | zcn 9196 | . . . . . . . . 9 | |
12 | 11 | adantl 275 | . . . . . . . 8 |
13 | 12 | mul02d 8290 | . . . . . . 7 |
14 | 13 | abs00bd 11008 | . . . . . 6 |
15 | 3, 10, 14 | 3eqtr4d 2208 | . . . . 5 lcm |
16 | 15 | adantr 274 | . . . 4 lcm |
17 | simpr 109 | . . . . . 6 | |
18 | 17 | oveq1d 5857 | . . . . 5 lcm lcm |
19 | 18 | oveq1d 5857 | . . . 4 lcm lcm |
20 | 17 | oveq1d 5857 | . . . . 5 |
21 | 20 | fveq2d 5490 | . . . 4 |
22 | 16, 19, 21 | 3eqtr4d 2208 | . . 3 lcm |
23 | lcm0val 11997 | . . . . . . . 8 lcm | |
24 | 23 | adantr 274 | . . . . . . 7 lcm |
25 | 24 | oveq1d 5857 | . . . . . 6 lcm |
26 | zcn 9196 | . . . . . . . . 9 | |
27 | 26 | adantr 274 | . . . . . . . 8 |
28 | 27 | mul01d 8291 | . . . . . . 7 |
29 | 28 | abs00bd 11008 | . . . . . 6 |
30 | 3, 25, 29 | 3eqtr4d 2208 | . . . . 5 lcm |
31 | 30 | adantr 274 | . . . 4 lcm |
32 | simpr 109 | . . . . . 6 | |
33 | 32 | oveq2d 5858 | . . . . 5 lcm lcm |
34 | 33 | oveq1d 5857 | . . . 4 lcm lcm |
35 | 32 | oveq2d 5858 | . . . . 5 |
36 | 35 | fveq2d 5490 | . . . 4 |
37 | 31, 34, 36 | 3eqtr4d 2208 | . . 3 lcm |
38 | 22, 37 | jaodan 787 | . 2 lcm |
39 | neanior 2423 | . . . . 5 | |
40 | nnabscl 11042 | . . . . . . 7 | |
41 | nnabscl 11042 | . . . . . . 7 | |
42 | 40, 41 | anim12i 336 | . . . . . 6 |
43 | 42 | an4s 578 | . . . . 5 |
44 | 39, 43 | sylan2br 286 | . . . 4 |
45 | lcmgcdlem 12009 | . . . . 5 lcm lcm | |
46 | 45 | simpld 111 | . . . 4 lcm |
47 | 44, 46 | syl 14 | . . 3 lcm |
48 | lcmabs 12008 | . . . . 5 lcm lcm | |
49 | gcdabs 11921 | . . . . 5 | |
50 | 48, 49 | oveq12d 5860 | . . . 4 lcm lcm |
51 | 50 | adantr 274 | . . 3 lcm lcm |
52 | absidm 11040 | . . . . . . 7 | |
53 | absidm 11040 | . . . . . . 7 | |
54 | 52, 53 | oveqan12d 5861 | . . . . . 6 |
55 | 26, 11, 54 | syl2an 287 | . . . . 5 |
56 | nn0abscl 11027 | . . . . . . . 8 | |
57 | 56 | nn0cnd 9169 | . . . . . . 7 |
58 | 57 | adantr 274 | . . . . . 6 |
59 | nn0abscl 11027 | . . . . . . . 8 | |
60 | 59 | nn0cnd 9169 | . . . . . . 7 |
61 | 60 | adantl 275 | . . . . . 6 |
62 | 58, 61 | absmuld 11136 | . . . . 5 |
63 | 27, 12 | absmuld 11136 | . . . . 5 |
64 | 55, 62, 63 | 3eqtr4d 2208 | . . . 4 |
65 | 64 | adantr 274 | . . 3 |
66 | 47, 51, 65 | 3eqtr3d 2206 | . 2 lcm |
67 | lcmmndc 11994 | . . 3 DECID | |
68 | exmiddc 826 | . . 3 DECID | |
69 | 67, 68 | syl 14 | . 2 |
70 | 38, 66, 69 | mpjaodan 788 | 1 lcm |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 cmul 7758 cn 8857 cz 9191 cabs 10939 cdvds 11727 cgcd 11875 lcm clcm 11992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 df-lcm 11993 |
This theorem is referenced by: lcmid 12012 lcm1 12013 lcmgcdnn 12014 |
Copyright terms: Public domain | W3C validator |