| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version | ||
| Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which
Multiple methods exist for proving this, and it is often proven either as
a consequence of the fundamental theorem of arithmetic or of
Bézout's identity bezout 12447; see, e.g.,
https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12447 and
https://math.stackexchange.com/a/470827 12447. This proof uses the latter to
first confirm it for positive integers |
| Ref | Expression |
|---|---|
| lcmgcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl 12402 |
. . . . . . . 8
| |
| 2 | 1 | nn0cnd 9385 |
. . . . . . 7
|
| 3 | 2 | mul02d 8499 |
. . . . . 6
|
| 4 | 0z 9418 |
. . . . . . . . . 10
| |
| 5 | lcmcom 12501 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . . 9
|
| 7 | lcm0val 12502 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqtr3d 2242 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | oveq1d 5982 |
. . . . . 6
|
| 11 | zcn 9412 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | mul02d 8499 |
. . . . . . 7
|
| 14 | 13 | abs00bd 11492 |
. . . . . 6
|
| 15 | 3, 10, 14 | 3eqtr4d 2250 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . 6
| |
| 18 | 17 | oveq1d 5982 |
. . . . 5
|
| 19 | 18 | oveq1d 5982 |
. . . 4
|
| 20 | 17 | oveq1d 5982 |
. . . . 5
|
| 21 | 20 | fveq2d 5603 |
. . . 4
|
| 22 | 16, 19, 21 | 3eqtr4d 2250 |
. . 3
|
| 23 | lcm0val 12502 |
. . . . . . . 8
| |
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 24 | oveq1d 5982 |
. . . . . 6
|
| 26 | zcn 9412 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 27 | mul01d 8500 |
. . . . . . 7
|
| 29 | 28 | abs00bd 11492 |
. . . . . 6
|
| 30 | 3, 25, 29 | 3eqtr4d 2250 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 32 | oveq2d 5983 |
. . . . 5
|
| 34 | 33 | oveq1d 5982 |
. . . 4
|
| 35 | 32 | oveq2d 5983 |
. . . . 5
|
| 36 | 35 | fveq2d 5603 |
. . . 4
|
| 37 | 31, 34, 36 | 3eqtr4d 2250 |
. . 3
|
| 38 | 22, 37 | jaodan 799 |
. 2
|
| 39 | neanior 2465 |
. . . . 5
| |
| 40 | nnabscl 11526 |
. . . . . . 7
| |
| 41 | nnabscl 11526 |
. . . . . . 7
| |
| 42 | 40, 41 | anim12i 338 |
. . . . . 6
|
| 43 | 42 | an4s 588 |
. . . . 5
|
| 44 | 39, 43 | sylan2br 288 |
. . . 4
|
| 45 | lcmgcdlem 12514 |
. . . . 5
| |
| 46 | 45 | simpld 112 |
. . . 4
|
| 47 | 44, 46 | syl 14 |
. . 3
|
| 48 | lcmabs 12513 |
. . . . 5
| |
| 49 | gcdabs 12424 |
. . . . 5
| |
| 50 | 48, 49 | oveq12d 5985 |
. . . 4
|
| 51 | 50 | adantr 276 |
. . 3
|
| 52 | absidm 11524 |
. . . . . . 7
| |
| 53 | absidm 11524 |
. . . . . . 7
| |
| 54 | 52, 53 | oveqan12d 5986 |
. . . . . 6
|
| 55 | 26, 11, 54 | syl2an 289 |
. . . . 5
|
| 56 | nn0abscl 11511 |
. . . . . . . 8
| |
| 57 | 56 | nn0cnd 9385 |
. . . . . . 7
|
| 58 | 57 | adantr 276 |
. . . . . 6
|
| 59 | nn0abscl 11511 |
. . . . . . . 8
| |
| 60 | 59 | nn0cnd 9385 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 58, 61 | absmuld 11620 |
. . . . 5
|
| 63 | 27, 12 | absmuld 11620 |
. . . . 5
|
| 64 | 55, 62, 63 | 3eqtr4d 2250 |
. . . 4
|
| 65 | 64 | adantr 276 |
. . 3
|
| 66 | 47, 51, 65 | 3eqtr3d 2248 |
. 2
|
| 67 | lcmmndc 12499 |
. . 3
| |
| 68 | exmiddc 838 |
. . 3
| |
| 69 | 67, 68 | syl 14 |
. 2
|
| 70 | 38, 66, 69 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-lcm 12498 |
| This theorem is referenced by: lcmid 12517 lcm1 12518 lcmgcdnn 12519 |
| Copyright terms: Public domain | W3C validator |