| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcd | Unicode version | ||
| Description: The product of two
numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which
Multiple methods exist for proving this, and it is often proven either as
a consequence of the fundamental theorem of arithmetic or of
Bézout's identity bezout 12178; see, e.g.,
https://proofwiki.org/wiki/Product_of_GCD_and_LCM 12178 and
https://math.stackexchange.com/a/470827 12178. This proof uses the latter to
first confirm it for positive integers |
| Ref | Expression |
|---|---|
| lcmgcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl 12133 |
. . . . . . . 8
| |
| 2 | 1 | nn0cnd 9304 |
. . . . . . 7
|
| 3 | 2 | mul02d 8418 |
. . . . . 6
|
| 4 | 0z 9337 |
. . . . . . . . . 10
| |
| 5 | lcmcom 12232 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | mpan2 425 |
. . . . . . . . 9
|
| 7 | lcm0val 12233 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqtr3d 2231 |
. . . . . . . 8
|
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | oveq1d 5937 |
. . . . . 6
|
| 11 | zcn 9331 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | mul02d 8418 |
. . . . . . 7
|
| 14 | 13 | abs00bd 11231 |
. . . . . 6
|
| 15 | 3, 10, 14 | 3eqtr4d 2239 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | simpr 110 |
. . . . . 6
| |
| 18 | 17 | oveq1d 5937 |
. . . . 5
|
| 19 | 18 | oveq1d 5937 |
. . . 4
|
| 20 | 17 | oveq1d 5937 |
. . . . 5
|
| 21 | 20 | fveq2d 5562 |
. . . 4
|
| 22 | 16, 19, 21 | 3eqtr4d 2239 |
. . 3
|
| 23 | lcm0val 12233 |
. . . . . . . 8
| |
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 24 | oveq1d 5937 |
. . . . . 6
|
| 26 | zcn 9331 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 27 | mul01d 8419 |
. . . . . . 7
|
| 29 | 28 | abs00bd 11231 |
. . . . . 6
|
| 30 | 3, 25, 29 | 3eqtr4d 2239 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | simpr 110 |
. . . . . 6
| |
| 33 | 32 | oveq2d 5938 |
. . . . 5
|
| 34 | 33 | oveq1d 5937 |
. . . 4
|
| 35 | 32 | oveq2d 5938 |
. . . . 5
|
| 36 | 35 | fveq2d 5562 |
. . . 4
|
| 37 | 31, 34, 36 | 3eqtr4d 2239 |
. . 3
|
| 38 | 22, 37 | jaodan 798 |
. 2
|
| 39 | neanior 2454 |
. . . . 5
| |
| 40 | nnabscl 11265 |
. . . . . . 7
| |
| 41 | nnabscl 11265 |
. . . . . . 7
| |
| 42 | 40, 41 | anim12i 338 |
. . . . . 6
|
| 43 | 42 | an4s 588 |
. . . . 5
|
| 44 | 39, 43 | sylan2br 288 |
. . . 4
|
| 45 | lcmgcdlem 12245 |
. . . . 5
| |
| 46 | 45 | simpld 112 |
. . . 4
|
| 47 | 44, 46 | syl 14 |
. . 3
|
| 48 | lcmabs 12244 |
. . . . 5
| |
| 49 | gcdabs 12155 |
. . . . 5
| |
| 50 | 48, 49 | oveq12d 5940 |
. . . 4
|
| 51 | 50 | adantr 276 |
. . 3
|
| 52 | absidm 11263 |
. . . . . . 7
| |
| 53 | absidm 11263 |
. . . . . . 7
| |
| 54 | 52, 53 | oveqan12d 5941 |
. . . . . 6
|
| 55 | 26, 11, 54 | syl2an 289 |
. . . . 5
|
| 56 | nn0abscl 11250 |
. . . . . . . 8
| |
| 57 | 56 | nn0cnd 9304 |
. . . . . . 7
|
| 58 | 57 | adantr 276 |
. . . . . 6
|
| 59 | nn0abscl 11250 |
. . . . . . . 8
| |
| 60 | 59 | nn0cnd 9304 |
. . . . . . 7
|
| 61 | 60 | adantl 277 |
. . . . . 6
|
| 62 | 58, 61 | absmuld 11359 |
. . . . 5
|
| 63 | 27, 12 | absmuld 11359 |
. . . . 5
|
| 64 | 55, 62, 63 | 3eqtr4d 2239 |
. . . 4
|
| 65 | 64 | adantr 276 |
. . 3
|
| 66 | 47, 51, 65 | 3eqtr3d 2237 |
. 2
|
| 67 | lcmmndc 12230 |
. . 3
| |
| 68 | exmiddc 837 |
. . 3
| |
| 69 | 67, 68 | syl 14 |
. 2
|
| 70 | 38, 66, 69 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 df-lcm 12229 |
| This theorem is referenced by: lcmid 12248 lcm1 12249 lcmgcdnn 12250 |
| Copyright terms: Public domain | W3C validator |