| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdiff | Unicode version | ||
| Description: The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
| Ref | Expression |
|---|---|
| apdiff |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 |
. . 3
| |
| 2 | 1 | cbvralv 2729 |
. 2
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | 3 | adantr 276 |
. . . . . . 7
|
| 5 | simplrl 535 |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | adantr 276 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | breq2 4038 |
. . . . . . . . . 10
| |
| 11 | simpllr 534 |
. . . . . . . . . 10
| |
| 12 | qaddcl 9726 |
. . . . . . . . . . . 12
| |
| 13 | 5, 7, 12 | syl2anc 411 |
. . . . . . . . . . 11
|
| 14 | 2z 9371 |
. . . . . . . . . . . 12
| |
| 15 | zq 9717 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | mp1i 10 |
. . . . . . . . . . 11
|
| 17 | 2ne0 9099 |
. . . . . . . . . . . 12
| |
| 18 | 17 | a1i 9 |
. . . . . . . . . . 11
|
| 19 | qdivcl 9734 |
. . . . . . . . . . 11
| |
| 20 | 13, 16, 18, 19 | syl3anc 1249 |
. . . . . . . . . 10
|
| 21 | 10, 11, 20 | rspcdva 2873 |
. . . . . . . . 9
|
| 22 | 3 | recnd 8072 |
. . . . . . . . . 10
|
| 23 | qcn 9725 |
. . . . . . . . . . 11
| |
| 24 | 20, 23 | syl 14 |
. . . . . . . . . 10
|
| 25 | apsym 8650 |
. . . . . . . . . 10
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . 9
|
| 27 | 21, 26 | mpbid 147 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 4, 6, 8, 9, 28 | apdifflemf 15777 |
. . . . . 6
|
| 30 | 3 | adantr 276 |
. . . . . . . 8
|
| 31 | 7 | adantr 276 |
. . . . . . . 8
|
| 32 | 5 | adantr 276 |
. . . . . . . 8
|
| 33 | simpr 110 |
. . . . . . . 8
| |
| 34 | qcn 9725 |
. . . . . . . . . . . . 13
| |
| 35 | 5, 34 | syl 14 |
. . . . . . . . . . . 12
|
| 36 | qcn 9725 |
. . . . . . . . . . . . 13
| |
| 37 | 7, 36 | syl 14 |
. . . . . . . . . . . 12
|
| 38 | 35, 37 | addcomd 8194 |
. . . . . . . . . . 11
|
| 39 | 38 | oveq1d 5940 |
. . . . . . . . . 10
|
| 40 | 39, 27 | eqbrtrrd 4058 |
. . . . . . . . 9
|
| 41 | 40 | adantr 276 |
. . . . . . . 8
|
| 42 | 30, 31, 32, 33, 41 | apdifflemf 15777 |
. . . . . . 7
|
| 43 | 22 | adantr 276 |
. . . . . . . . . . 11
|
| 44 | 31, 36 | syl 14 |
. . . . . . . . . . 11
|
| 45 | 43, 44 | subcld 8354 |
. . . . . . . . . 10
|
| 46 | 45 | abscld 11363 |
. . . . . . . . 9
|
| 47 | 46 | recnd 8072 |
. . . . . . . 8
|
| 48 | 32, 34 | syl 14 |
. . . . . . . . . . 11
|
| 49 | 43, 48 | subcld 8354 |
. . . . . . . . . 10
|
| 50 | 49 | abscld 11363 |
. . . . . . . . 9
|
| 51 | 50 | recnd 8072 |
. . . . . . . 8
|
| 52 | apsym 8650 |
. . . . . . . 8
| |
| 53 | 47, 51, 52 | syl2anc 411 |
. . . . . . 7
|
| 54 | 42, 53 | mpbid 147 |
. . . . . 6
|
| 55 | simpr 110 |
. . . . . . 7
| |
| 56 | qlttri2 9732 |
. . . . . . . 8
| |
| 57 | 5, 7, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 55, 57 | mpbid 147 |
. . . . . 6
|
| 59 | 29, 54, 58 | mpjaodan 799 |
. . . . 5
|
| 60 | 59 | ex 115 |
. . . 4
|
| 61 | 60 | ralrimivva 2579 |
. . 3
|
| 62 | simpll 527 |
. . . . 5
| |
| 63 | simpr 110 |
. . . . 5
| |
| 64 | simplr 528 |
. . . . . 6
| |
| 65 | neg1rr 9113 |
. . . . . . . 8
| |
| 66 | neg1lt0 9115 |
. . . . . . . . 9
| |
| 67 | 0lt1 8170 |
. . . . . . . . 9
| |
| 68 | 0re 8043 |
. . . . . . . . . 10
| |
| 69 | 1re 8042 |
. . . . . . . . . 10
| |
| 70 | 65, 68, 69 | lttri 8148 |
. . . . . . . . 9
|
| 71 | 66, 67, 70 | mp2an 426 |
. . . . . . . 8
|
| 72 | 65, 71 | ltneii 8140 |
. . . . . . 7
|
| 73 | 72 | a1i 9 |
. . . . . 6
|
| 74 | neg1z 9375 |
. . . . . . . 8
| |
| 75 | zq 9717 |
. . . . . . . 8
| |
| 76 | 74, 75 | mp1i 10 |
. . . . . . 7
|
| 77 | 1z 9369 |
. . . . . . . 8
| |
| 78 | zq 9717 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | simpl 109 |
. . . . . . . . . 10
| |
| 81 | simpr 110 |
. . . . . . . . . 10
| |
| 82 | 80, 81 | neeq12d 2387 |
. . . . . . . . 9
|
| 83 | 80 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 84 | 83 | fveq2d 5565 |
. . . . . . . . . 10
|
| 85 | 81 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 86 | 85 | fveq2d 5565 |
. . . . . . . . . 10
|
| 87 | 84, 86 | breq12d 4047 |
. . . . . . . . 9
|
| 88 | 82, 87 | imbi12d 234 |
. . . . . . . 8
|
| 89 | 88 | rspc2gv 2880 |
. . . . . . 7
|
| 90 | 76, 79, 89 | syl2anc 411 |
. . . . . 6
|
| 91 | 64, 73, 90 | mp2d 47 |
. . . . 5
|
| 92 | simpllr 534 |
. . . . . 6
| |
| 93 | 2cnd 9080 |
. . . . . . . . 9
| |
| 94 | simplr 528 |
. . . . . . . . . 10
| |
| 95 | qcn 9725 |
. . . . . . . . . 10
| |
| 96 | 94, 95 | syl 14 |
. . . . . . . . 9
|
| 97 | 2ap0 9100 |
. . . . . . . . . 10
| |
| 98 | 97 | a1i 9 |
. . . . . . . . 9
|
| 99 | simpr 110 |
. . . . . . . . . 10
| |
| 100 | 0z 9354 |
. . . . . . . . . . . 12
| |
| 101 | zq 9717 |
. . . . . . . . . . . 12
| |
| 102 | 100, 101 | mp1i 10 |
. . . . . . . . . . 11
|
| 103 | qapne 9730 |
. . . . . . . . . . 11
| |
| 104 | 94, 102, 103 | syl2anc 411 |
. . . . . . . . . 10
|
| 105 | 99, 104 | mpbird 167 |
. . . . . . . . 9
|
| 106 | 93, 96, 98, 105 | mulap0d 8702 |
. . . . . . . 8
|
| 107 | 14, 15 | mp1i 10 |
. . . . . . . . . . 11
|
| 108 | qmulcl 9728 |
. . . . . . . . . . 11
| |
| 109 | 107, 94, 108 | syl2anc 411 |
. . . . . . . . . 10
|
| 110 | qcn 9725 |
. . . . . . . . . 10
| |
| 111 | 109, 110 | syl 14 |
. . . . . . . . 9
|
| 112 | 0cnd 8036 |
. . . . . . . . 9
| |
| 113 | apsym 8650 |
. . . . . . . . 9
| |
| 114 | 111, 112, 113 | syl2anc 411 |
. . . . . . . 8
|
| 115 | 106, 114 | mpbid 147 |
. . . . . . 7
|
| 116 | qapne 9730 |
. . . . . . . 8
| |
| 117 | 102, 109, 116 | syl2anc 411 |
. . . . . . 7
|
| 118 | 115, 117 | mpbid 147 |
. . . . . 6
|
| 119 | simpl 109 |
. . . . . . . . . 10
| |
| 120 | simpr 110 |
. . . . . . . . . 10
| |
| 121 | 119, 120 | neeq12d 2387 |
. . . . . . . . 9
|
| 122 | 119 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 123 | 122 | fveq2d 5565 |
. . . . . . . . . 10
|
| 124 | 120 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 125 | 124 | fveq2d 5565 |
. . . . . . . . . 10
|
| 126 | 123, 125 | breq12d 4047 |
. . . . . . . . 9
|
| 127 | 121, 126 | imbi12d 234 |
. . . . . . . 8
|
| 128 | 127 | rspc2gv 2880 |
. . . . . . 7
|
| 129 | 102, 109, 128 | syl2anc 411 |
. . . . . 6
|
| 130 | 92, 118, 129 | mp2d 47 |
. . . . 5
|
| 131 | 62, 63, 91, 130 | apdifflemr 15778 |
. . . 4
|
| 132 | 131 | ralrimiva 2570 |
. . 3
|
| 133 | 61, 132 | impbida 596 |
. 2
|
| 134 | 2, 133 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |