| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdiff | Unicode version | ||
| Description: The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
| Ref | Expression |
|---|---|
| apdiff |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4086 |
. . 3
| |
| 2 | 1 | cbvralv 2765 |
. 2
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | 3 | adantr 276 |
. . . . . . 7
|
| 5 | simplrl 535 |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | adantr 276 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | breq2 4086 |
. . . . . . . . . 10
| |
| 11 | simpllr 534 |
. . . . . . . . . 10
| |
| 12 | qaddcl 9818 |
. . . . . . . . . . . 12
| |
| 13 | 5, 7, 12 | syl2anc 411 |
. . . . . . . . . . 11
|
| 14 | 2z 9462 |
. . . . . . . . . . . 12
| |
| 15 | zq 9809 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | mp1i 10 |
. . . . . . . . . . 11
|
| 17 | 2ne0 9190 |
. . . . . . . . . . . 12
| |
| 18 | 17 | a1i 9 |
. . . . . . . . . . 11
|
| 19 | qdivcl 9826 |
. . . . . . . . . . 11
| |
| 20 | 13, 16, 18, 19 | syl3anc 1271 |
. . . . . . . . . 10
|
| 21 | 10, 11, 20 | rspcdva 2912 |
. . . . . . . . 9
|
| 22 | 3 | recnd 8163 |
. . . . . . . . . 10
|
| 23 | qcn 9817 |
. . . . . . . . . . 11
| |
| 24 | 20, 23 | syl 14 |
. . . . . . . . . 10
|
| 25 | apsym 8741 |
. . . . . . . . . 10
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . 9
|
| 27 | 21, 26 | mpbid 147 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 4, 6, 8, 9, 28 | apdifflemf 16345 |
. . . . . 6
|
| 30 | 3 | adantr 276 |
. . . . . . . 8
|
| 31 | 7 | adantr 276 |
. . . . . . . 8
|
| 32 | 5 | adantr 276 |
. . . . . . . 8
|
| 33 | simpr 110 |
. . . . . . . 8
| |
| 34 | qcn 9817 |
. . . . . . . . . . . . 13
| |
| 35 | 5, 34 | syl 14 |
. . . . . . . . . . . 12
|
| 36 | qcn 9817 |
. . . . . . . . . . . . 13
| |
| 37 | 7, 36 | syl 14 |
. . . . . . . . . . . 12
|
| 38 | 35, 37 | addcomd 8285 |
. . . . . . . . . . 11
|
| 39 | 38 | oveq1d 6009 |
. . . . . . . . . 10
|
| 40 | 39, 27 | eqbrtrrd 4106 |
. . . . . . . . 9
|
| 41 | 40 | adantr 276 |
. . . . . . . 8
|
| 42 | 30, 31, 32, 33, 41 | apdifflemf 16345 |
. . . . . . 7
|
| 43 | 22 | adantr 276 |
. . . . . . . . . . 11
|
| 44 | 31, 36 | syl 14 |
. . . . . . . . . . 11
|
| 45 | 43, 44 | subcld 8445 |
. . . . . . . . . 10
|
| 46 | 45 | abscld 11678 |
. . . . . . . . 9
|
| 47 | 46 | recnd 8163 |
. . . . . . . 8
|
| 48 | 32, 34 | syl 14 |
. . . . . . . . . . 11
|
| 49 | 43, 48 | subcld 8445 |
. . . . . . . . . 10
|
| 50 | 49 | abscld 11678 |
. . . . . . . . 9
|
| 51 | 50 | recnd 8163 |
. . . . . . . 8
|
| 52 | apsym 8741 |
. . . . . . . 8
| |
| 53 | 47, 51, 52 | syl2anc 411 |
. . . . . . 7
|
| 54 | 42, 53 | mpbid 147 |
. . . . . 6
|
| 55 | simpr 110 |
. . . . . . 7
| |
| 56 | qlttri2 9824 |
. . . . . . . 8
| |
| 57 | 5, 7, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 55, 57 | mpbid 147 |
. . . . . 6
|
| 59 | 29, 54, 58 | mpjaodan 803 |
. . . . 5
|
| 60 | 59 | ex 115 |
. . . 4
|
| 61 | 60 | ralrimivva 2612 |
. . 3
|
| 62 | simpll 527 |
. . . . 5
| |
| 63 | simpr 110 |
. . . . 5
| |
| 64 | simplr 528 |
. . . . . 6
| |
| 65 | neg1rr 9204 |
. . . . . . . 8
| |
| 66 | neg1lt0 9206 |
. . . . . . . . 9
| |
| 67 | 0lt1 8261 |
. . . . . . . . 9
| |
| 68 | 0re 8134 |
. . . . . . . . . 10
| |
| 69 | 1re 8133 |
. . . . . . . . . 10
| |
| 70 | 65, 68, 69 | lttri 8239 |
. . . . . . . . 9
|
| 71 | 66, 67, 70 | mp2an 426 |
. . . . . . . 8
|
| 72 | 65, 71 | ltneii 8231 |
. . . . . . 7
|
| 73 | 72 | a1i 9 |
. . . . . 6
|
| 74 | neg1z 9466 |
. . . . . . . 8
| |
| 75 | zq 9809 |
. . . . . . . 8
| |
| 76 | 74, 75 | mp1i 10 |
. . . . . . 7
|
| 77 | 1z 9460 |
. . . . . . . 8
| |
| 78 | zq 9809 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | simpl 109 |
. . . . . . . . . 10
| |
| 81 | simpr 110 |
. . . . . . . . . 10
| |
| 82 | 80, 81 | neeq12d 2420 |
. . . . . . . . 9
|
| 83 | 80 | oveq2d 6010 |
. . . . . . . . . . 11
|
| 84 | 83 | fveq2d 5627 |
. . . . . . . . . 10
|
| 85 | 81 | oveq2d 6010 |
. . . . . . . . . . 11
|
| 86 | 85 | fveq2d 5627 |
. . . . . . . . . 10
|
| 87 | 84, 86 | breq12d 4095 |
. . . . . . . . 9
|
| 88 | 82, 87 | imbi12d 234 |
. . . . . . . 8
|
| 89 | 88 | rspc2gv 2919 |
. . . . . . 7
|
| 90 | 76, 79, 89 | syl2anc 411 |
. . . . . 6
|
| 91 | 64, 73, 90 | mp2d 47 |
. . . . 5
|
| 92 | simpllr 534 |
. . . . . 6
| |
| 93 | 2cnd 9171 |
. . . . . . . . 9
| |
| 94 | simplr 528 |
. . . . . . . . . 10
| |
| 95 | qcn 9817 |
. . . . . . . . . 10
| |
| 96 | 94, 95 | syl 14 |
. . . . . . . . 9
|
| 97 | 2ap0 9191 |
. . . . . . . . . 10
| |
| 98 | 97 | a1i 9 |
. . . . . . . . 9
|
| 99 | simpr 110 |
. . . . . . . . . 10
| |
| 100 | 0z 9445 |
. . . . . . . . . . . 12
| |
| 101 | zq 9809 |
. . . . . . . . . . . 12
| |
| 102 | 100, 101 | mp1i 10 |
. . . . . . . . . . 11
|
| 103 | qapne 9822 |
. . . . . . . . . . 11
| |
| 104 | 94, 102, 103 | syl2anc 411 |
. . . . . . . . . 10
|
| 105 | 99, 104 | mpbird 167 |
. . . . . . . . 9
|
| 106 | 93, 96, 98, 105 | mulap0d 8793 |
. . . . . . . 8
|
| 107 | 14, 15 | mp1i 10 |
. . . . . . . . . . 11
|
| 108 | qmulcl 9820 |
. . . . . . . . . . 11
| |
| 109 | 107, 94, 108 | syl2anc 411 |
. . . . . . . . . 10
|
| 110 | qcn 9817 |
. . . . . . . . . 10
| |
| 111 | 109, 110 | syl 14 |
. . . . . . . . 9
|
| 112 | 0cnd 8127 |
. . . . . . . . 9
| |
| 113 | apsym 8741 |
. . . . . . . . 9
| |
| 114 | 111, 112, 113 | syl2anc 411 |
. . . . . . . 8
|
| 115 | 106, 114 | mpbid 147 |
. . . . . . 7
|
| 116 | qapne 9822 |
. . . . . . . 8
| |
| 117 | 102, 109, 116 | syl2anc 411 |
. . . . . . 7
|
| 118 | 115, 117 | mpbid 147 |
. . . . . 6
|
| 119 | simpl 109 |
. . . . . . . . . 10
| |
| 120 | simpr 110 |
. . . . . . . . . 10
| |
| 121 | 119, 120 | neeq12d 2420 |
. . . . . . . . 9
|
| 122 | 119 | oveq2d 6010 |
. . . . . . . . . . 11
|
| 123 | 122 | fveq2d 5627 |
. . . . . . . . . 10
|
| 124 | 120 | oveq2d 6010 |
. . . . . . . . . . 11
|
| 125 | 124 | fveq2d 5627 |
. . . . . . . . . 10
|
| 126 | 123, 125 | breq12d 4095 |
. . . . . . . . 9
|
| 127 | 121, 126 | imbi12d 234 |
. . . . . . . 8
|
| 128 | 127 | rspc2gv 2919 |
. . . . . . 7
|
| 129 | 102, 109, 128 | syl2anc 411 |
. . . . . 6
|
| 130 | 92, 118, 129 | mp2d 47 |
. . . . 5
|
| 131 | 62, 63, 91, 130 | apdifflemr 16346 |
. . . 4
|
| 132 | 131 | ralrimiva 2603 |
. . 3
|
| 133 | 61, 132 | impbida 598 |
. 2
|
| 134 | 2, 133 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |