Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdiff Unicode version

Theorem apdiff 15779
Description: The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
Assertion
Ref Expression
apdiff  |-  ( A  e.  RR  ->  ( A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) ) )
Distinct variable group:    A, q, r

Proof of Theorem apdiff
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 breq2 4038 . . 3  |-  ( q  =  s  ->  ( A #  q  <->  A #  s )
)
21cbvralv 2729 . 2  |-  ( A. q  e.  QQ  A #  q 
<-> 
A. s  e.  QQ  A #  s )
3 simplll 533 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A  e.  RR )
43adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  A  e.  RR )
5 simplrl 535 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
q  e.  QQ )
65adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  q  e.  QQ )
7 simplrr 536 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
r  e.  QQ )
87adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  r  e.  QQ )
9 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  q  <  r )
10 breq2 4038 . . . . . . . . . 10  |-  ( s  =  ( ( q  +  r )  / 
2 )  ->  ( A #  s  <->  A #  ( (
q  +  r )  /  2 ) ) )
11 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A. s  e.  QQ  A #  s )
12 qaddcl 9726 . . . . . . . . . . . 12  |-  ( ( q  e.  QQ  /\  r  e.  QQ )  ->  ( q  +  r )  e.  QQ )
135, 7, 12syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  +  r )  e.  QQ )
14 2z 9371 . . . . . . . . . . . 12  |-  2  e.  ZZ
15 zq 9717 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
1614, 15mp1i 10 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
2  e.  QQ )
17 2ne0 9099 . . . . . . . . . . . 12  |-  2  =/=  0
1817a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
2  =/=  0 )
19 qdivcl 9734 . . . . . . . . . . 11  |-  ( ( ( q  +  r )  e.  QQ  /\  2  e.  QQ  /\  2  =/=  0 )  ->  (
( q  +  r )  /  2 )  e.  QQ )
2013, 16, 18, 19syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
)  e.  QQ )
2110, 11, 20rspcdva 2873 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A #  ( ( q  +  r )  /  2
) )
223recnd 8072 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A  e.  CC )
23 qcn 9725 . . . . . . . . . . 11  |-  ( ( ( q  +  r )  /  2 )  e.  QQ  ->  (
( q  +  r )  /  2 )  e.  CC )
2420, 23syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
)  e.  CC )
25 apsym 8650 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( q  +  r )  /  2
)  e.  CC )  ->  ( A #  (
( q  +  r )  /  2 )  <-> 
( ( q  +  r )  /  2
) #  A ) )
2622, 24, 25syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( A #  ( ( q  +  r )  /  2 )  <->  ( (
q  +  r )  /  2 ) #  A
) )
2721, 26mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
) #  A )
2827adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  (
( q  +  r )  /  2 ) #  A )
294, 6, 8, 9, 28apdifflemf 15777 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) )
303adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  A  e.  RR )
317adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  r  e.  QQ )
325adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  q  e.  QQ )
33 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  r  <  q )
34 qcn 9725 . . . . . . . . . . . . 13  |-  ( q  e.  QQ  ->  q  e.  CC )
355, 34syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
q  e.  CC )
36 qcn 9725 . . . . . . . . . . . . 13  |-  ( r  e.  QQ  ->  r  e.  CC )
377, 36syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
r  e.  CC )
3835, 37addcomd 8194 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  +  r )  =  ( r  +  q ) )
3938oveq1d 5940 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
)  =  ( ( r  +  q )  /  2 ) )
4039, 27eqbrtrrd 4058 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( r  +  q )  /  2
) #  A )
4140adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  (
( r  +  q )  /  2 ) #  A )
4230, 31, 32, 33, 41apdifflemf 15777 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  r ) ) #  ( abs `  ( A  -  q ) ) )
4322adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  A  e.  CC )
4431, 36syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  r  e.  CC )
4543, 44subcld 8354 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( A  -  r )  e.  CC )
4645abscld 11363 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  r ) )  e.  RR )
4746recnd 8072 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  r ) )  e.  CC )
4832, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  q  e.  CC )
4943, 48subcld 8354 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( A  -  q )  e.  CC )
5049abscld 11363 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  q ) )  e.  RR )
5150recnd 8072 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  q ) )  e.  CC )
52 apsym 8650 . . . . . . . 8  |-  ( ( ( abs `  ( A  -  r )
)  e.  CC  /\  ( abs `  ( A  -  q ) )  e.  CC )  -> 
( ( abs `  ( A  -  r )
) #  ( abs `  ( A  -  q )
)  <->  ( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )
5347, 51, 52syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  (
( abs `  ( A  -  r )
) #  ( abs `  ( A  -  q )
)  <->  ( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )
5442, 53mpbid 147 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) )
55 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
q  =/=  r )
56 qlttri2 9732 . . . . . . . 8  |-  ( ( q  e.  QQ  /\  r  e.  QQ )  ->  ( q  =/=  r  <->  ( q  <  r  \/  r  <  q ) ) )
575, 7, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  =/=  r  <->  ( q  <  r  \/  r  <  q ) ) )
5855, 57mpbid 147 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  <  r  \/  r  <  q ) )
5929, 54, 58mpjaodan 799 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) )
6059ex 115 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  ->  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )
6160ralrimivva 2579 . . 3  |-  ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  ->  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )
62 simpll 527 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  A  e.  RR )
63 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  s  e.  QQ )
64 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )
65 neg1rr 9113 . . . . . . . 8  |-  -u 1  e.  RR
66 neg1lt0 9115 . . . . . . . . 9  |-  -u 1  <  0
67 0lt1 8170 . . . . . . . . 9  |-  0  <  1
68 0re 8043 . . . . . . . . . 10  |-  0  e.  RR
69 1re 8042 . . . . . . . . . 10  |-  1  e.  RR
7065, 68, 69lttri 8148 . . . . . . . . 9  |-  ( (
-u 1  <  0  /\  0  <  1
)  ->  -u 1  <  1 )
7166, 67, 70mp2an 426 . . . . . . . 8  |-  -u 1  <  1
7265, 71ltneii 8140 . . . . . . 7  |-  -u 1  =/=  1
7372a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  -> 
-u 1  =/=  1
)
74 neg1z 9375 . . . . . . . 8  |-  -u 1  e.  ZZ
75 zq 9717 . . . . . . . 8  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
7674, 75mp1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  -> 
-u 1  e.  QQ )
77 1z 9369 . . . . . . . 8  |-  1  e.  ZZ
78 zq 9717 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
7977, 78mp1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  1  e.  QQ )
80 simpl 109 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  q  =  -u 1 )
81 simpr 110 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  r  = 
1 )
8280, 81neeq12d 2387 . . . . . . . . 9  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( q  =/=  r  <->  -u 1  =/=  1
) )
8380oveq2d 5941 . . . . . . . . . . 11  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( A  -  q )  =  ( A  -  -u 1
) )
8483fveq2d 5565 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( abs `  ( A  -  q
) )  =  ( abs `  ( A  -  -u 1 ) ) )
8581oveq2d 5941 . . . . . . . . . . 11  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( A  -  r )  =  ( A  -  1 ) )
8685fveq2d 5565 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  1 ) ) )
8784, 86breq12d 4047 . . . . . . . . 9  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) )  <-> 
( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) ) )
8882, 87imbi12d 234 . . . . . . . 8  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) )  <->  ( -u 1  =/=  1  ->  ( abs `  ( A  -  -u 1
) ) #  ( abs `  ( A  -  1 ) ) ) ) )
8988rspc2gv 2880 . . . . . . 7  |-  ( (
-u 1  e.  QQ  /\  1  e.  QQ )  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( -u 1  =/=  1  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) ) ) )
9076, 79, 89syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( -u 1  =/=  1  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) ) ) )
9164, 73, 90mp2d 47 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
92 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )
93 2cnd 9080 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  2  e.  CC )
94 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s  e.  QQ )
95 qcn 9725 . . . . . . . . . 10  |-  ( s  e.  QQ  ->  s  e.  CC )
9694, 95syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s  e.  CC )
97 2ap0 9100 . . . . . . . . . 10  |-  2 #  0
9897a1i 9 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  2 #  0
)
99 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s  =/=  0 )
100 0z 9354 . . . . . . . . . . . 12  |-  0  e.  ZZ
101 zq 9717 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
102100, 101mp1i 10 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0  e.  QQ )
103 qapne 9730 . . . . . . . . . . 11  |-  ( ( s  e.  QQ  /\  0  e.  QQ )  ->  ( s #  0  <->  s  =/=  0 ) )
10494, 102, 103syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( s #  0 
<->  s  =/=  0 ) )
10599, 104mpbird 167 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s #  0
)
10693, 96, 98, 105mulap0d 8702 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 2  x.  s ) #  0 )
10714, 15mp1i 10 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  2  e.  QQ )
108 qmulcl 9728 . . . . . . . . . . 11  |-  ( ( 2  e.  QQ  /\  s  e.  QQ )  ->  ( 2  x.  s
)  e.  QQ )
109107, 94, 108syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 2  x.  s )  e.  QQ )
110 qcn 9725 . . . . . . . . . 10  |-  ( ( 2  x.  s )  e.  QQ  ->  (
2  x.  s )  e.  CC )
111109, 110syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 2  x.  s )  e.  CC )
112 0cnd 8036 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0  e.  CC )
113 apsym 8650 . . . . . . . . 9  |-  ( ( ( 2  x.  s
)  e.  CC  /\  0  e.  CC )  ->  ( ( 2  x.  s ) #  0  <->  0 #  ( 2  x.  s
) ) )
114111, 112, 113syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( (
2  x.  s ) #  0  <->  0 #  ( 2  x.  s ) ) )
115106, 114mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0 #  (
2  x.  s ) )
116 qapne 9730 . . . . . . . 8  |-  ( ( 0  e.  QQ  /\  ( 2  x.  s
)  e.  QQ )  ->  ( 0 #  ( 2  x.  s )  <->  0  =/=  ( 2  x.  s ) ) )
117102, 109, 116syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 0 #  ( 2  x.  s
)  <->  0  =/=  (
2  x.  s ) ) )
118115, 117mpbid 147 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0  =/=  ( 2  x.  s
) )
119 simpl 109 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  q  =  0 )
120 simpr 110 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  r  =  ( 2  x.  s ) )
121119, 120neeq12d 2387 . . . . . . . . 9  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( q  =/=  r  <->  0  =/=  (
2  x.  s ) ) )
122119oveq2d 5941 . . . . . . . . . . 11  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( A  -  q )  =  ( A  -  0 ) )
123122fveq2d 5565 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( abs `  ( A  -  q )
)  =  ( abs `  ( A  -  0 ) ) )
124120oveq2d 5941 . . . . . . . . . . 11  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( A  -  r )  =  ( A  -  ( 2  x.  s ) ) )
125124fveq2d 5565 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  (
2  x.  s ) ) ) )
126123, 125breq12d 4047 . . . . . . . . 9  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) )  <->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  (
2  x.  s ) ) ) ) )
127121, 126imbi12d 234 . . . . . . . 8  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( ( q  =/=  r  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) )  <->  ( 0  =/=  ( 2  x.  s
)  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  (
2  x.  s ) ) ) ) ) )
128127rspc2gv 2880 . . . . . . 7  |-  ( ( 0  e.  QQ  /\  ( 2  x.  s
)  e.  QQ )  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( 0  =/=  (
2  x.  s )  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  s ) ) ) ) ) )
129102, 109, 128syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( 0  =/=  (
2  x.  s )  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  s ) ) ) ) ) )
13092, 118, 129mp2d 47 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  (
2  x.  s ) ) ) )
13162, 63, 91, 130apdifflemr 15778 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  A #  s )
132131ralrimiva 2570 . . 3  |-  ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  ->  A. s  e.  QQ  A #  s )
13361, 132impbida 596 . 2  |-  ( A  e.  RR  ->  ( A. s  e.  QQ  A #  s  <->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) ) )
1342, 133bitrid 192 1  |-  ( A  e.  RR  ->  ( A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214   -ucneg 8215   # cap 8625    / cdiv 8716   2c2 9058   ZZcz 9343   QQcq 9710   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator