| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > apdiff | Unicode version | ||
| Description: The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
| Ref | Expression |
|---|---|
| apdiff |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 |
. . 3
| |
| 2 | 1 | cbvralv 2765 |
. 2
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | 3 | adantr 276 |
. . . . . . 7
|
| 5 | simplrl 535 |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | adantr 276 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | breq2 4087 |
. . . . . . . . . 10
| |
| 11 | simpllr 534 |
. . . . . . . . . 10
| |
| 12 | qaddcl 9838 |
. . . . . . . . . . . 12
| |
| 13 | 5, 7, 12 | syl2anc 411 |
. . . . . . . . . . 11
|
| 14 | 2z 9482 |
. . . . . . . . . . . 12
| |
| 15 | zq 9829 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | mp1i 10 |
. . . . . . . . . . 11
|
| 17 | 2ne0 9210 |
. . . . . . . . . . . 12
| |
| 18 | 17 | a1i 9 |
. . . . . . . . . . 11
|
| 19 | qdivcl 9846 |
. . . . . . . . . . 11
| |
| 20 | 13, 16, 18, 19 | syl3anc 1271 |
. . . . . . . . . 10
|
| 21 | 10, 11, 20 | rspcdva 2912 |
. . . . . . . . 9
|
| 22 | 3 | recnd 8183 |
. . . . . . . . . 10
|
| 23 | qcn 9837 |
. . . . . . . . . . 11
| |
| 24 | 20, 23 | syl 14 |
. . . . . . . . . 10
|
| 25 | apsym 8761 |
. . . . . . . . . 10
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . 9
|
| 27 | 21, 26 | mpbid 147 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 4, 6, 8, 9, 28 | apdifflemf 16444 |
. . . . . 6
|
| 30 | 3 | adantr 276 |
. . . . . . . 8
|
| 31 | 7 | adantr 276 |
. . . . . . . 8
|
| 32 | 5 | adantr 276 |
. . . . . . . 8
|
| 33 | simpr 110 |
. . . . . . . 8
| |
| 34 | qcn 9837 |
. . . . . . . . . . . . 13
| |
| 35 | 5, 34 | syl 14 |
. . . . . . . . . . . 12
|
| 36 | qcn 9837 |
. . . . . . . . . . . . 13
| |
| 37 | 7, 36 | syl 14 |
. . . . . . . . . . . 12
|
| 38 | 35, 37 | addcomd 8305 |
. . . . . . . . . . 11
|
| 39 | 38 | oveq1d 6022 |
. . . . . . . . . 10
|
| 40 | 39, 27 | eqbrtrrd 4107 |
. . . . . . . . 9
|
| 41 | 40 | adantr 276 |
. . . . . . . 8
|
| 42 | 30, 31, 32, 33, 41 | apdifflemf 16444 |
. . . . . . 7
|
| 43 | 22 | adantr 276 |
. . . . . . . . . . 11
|
| 44 | 31, 36 | syl 14 |
. . . . . . . . . . 11
|
| 45 | 43, 44 | subcld 8465 |
. . . . . . . . . 10
|
| 46 | 45 | abscld 11700 |
. . . . . . . . 9
|
| 47 | 46 | recnd 8183 |
. . . . . . . 8
|
| 48 | 32, 34 | syl 14 |
. . . . . . . . . . 11
|
| 49 | 43, 48 | subcld 8465 |
. . . . . . . . . 10
|
| 50 | 49 | abscld 11700 |
. . . . . . . . 9
|
| 51 | 50 | recnd 8183 |
. . . . . . . 8
|
| 52 | apsym 8761 |
. . . . . . . 8
| |
| 53 | 47, 51, 52 | syl2anc 411 |
. . . . . . 7
|
| 54 | 42, 53 | mpbid 147 |
. . . . . 6
|
| 55 | simpr 110 |
. . . . . . 7
| |
| 56 | qlttri2 9844 |
. . . . . . . 8
| |
| 57 | 5, 7, 56 | syl2anc 411 |
. . . . . . 7
|
| 58 | 55, 57 | mpbid 147 |
. . . . . 6
|
| 59 | 29, 54, 58 | mpjaodan 803 |
. . . . 5
|
| 60 | 59 | ex 115 |
. . . 4
|
| 61 | 60 | ralrimivva 2612 |
. . 3
|
| 62 | simpll 527 |
. . . . 5
| |
| 63 | simpr 110 |
. . . . 5
| |
| 64 | simplr 528 |
. . . . . 6
| |
| 65 | neg1rr 9224 |
. . . . . . . 8
| |
| 66 | neg1lt0 9226 |
. . . . . . . . 9
| |
| 67 | 0lt1 8281 |
. . . . . . . . 9
| |
| 68 | 0re 8154 |
. . . . . . . . . 10
| |
| 69 | 1re 8153 |
. . . . . . . . . 10
| |
| 70 | 65, 68, 69 | lttri 8259 |
. . . . . . . . 9
|
| 71 | 66, 67, 70 | mp2an 426 |
. . . . . . . 8
|
| 72 | 65, 71 | ltneii 8251 |
. . . . . . 7
|
| 73 | 72 | a1i 9 |
. . . . . 6
|
| 74 | neg1z 9486 |
. . . . . . . 8
| |
| 75 | zq 9829 |
. . . . . . . 8
| |
| 76 | 74, 75 | mp1i 10 |
. . . . . . 7
|
| 77 | 1z 9480 |
. . . . . . . 8
| |
| 78 | zq 9829 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | simpl 109 |
. . . . . . . . . 10
| |
| 81 | simpr 110 |
. . . . . . . . . 10
| |
| 82 | 80, 81 | neeq12d 2420 |
. . . . . . . . 9
|
| 83 | 80 | oveq2d 6023 |
. . . . . . . . . . 11
|
| 84 | 83 | fveq2d 5633 |
. . . . . . . . . 10
|
| 85 | 81 | oveq2d 6023 |
. . . . . . . . . . 11
|
| 86 | 85 | fveq2d 5633 |
. . . . . . . . . 10
|
| 87 | 84, 86 | breq12d 4096 |
. . . . . . . . 9
|
| 88 | 82, 87 | imbi12d 234 |
. . . . . . . 8
|
| 89 | 88 | rspc2gv 2919 |
. . . . . . 7
|
| 90 | 76, 79, 89 | syl2anc 411 |
. . . . . 6
|
| 91 | 64, 73, 90 | mp2d 47 |
. . . . 5
|
| 92 | simpllr 534 |
. . . . . 6
| |
| 93 | 2cnd 9191 |
. . . . . . . . 9
| |
| 94 | simplr 528 |
. . . . . . . . . 10
| |
| 95 | qcn 9837 |
. . . . . . . . . 10
| |
| 96 | 94, 95 | syl 14 |
. . . . . . . . 9
|
| 97 | 2ap0 9211 |
. . . . . . . . . 10
| |
| 98 | 97 | a1i 9 |
. . . . . . . . 9
|
| 99 | simpr 110 |
. . . . . . . . . 10
| |
| 100 | 0z 9465 |
. . . . . . . . . . . 12
| |
| 101 | zq 9829 |
. . . . . . . . . . . 12
| |
| 102 | 100, 101 | mp1i 10 |
. . . . . . . . . . 11
|
| 103 | qapne 9842 |
. . . . . . . . . . 11
| |
| 104 | 94, 102, 103 | syl2anc 411 |
. . . . . . . . . 10
|
| 105 | 99, 104 | mpbird 167 |
. . . . . . . . 9
|
| 106 | 93, 96, 98, 105 | mulap0d 8813 |
. . . . . . . 8
|
| 107 | 14, 15 | mp1i 10 |
. . . . . . . . . . 11
|
| 108 | qmulcl 9840 |
. . . . . . . . . . 11
| |
| 109 | 107, 94, 108 | syl2anc 411 |
. . . . . . . . . 10
|
| 110 | qcn 9837 |
. . . . . . . . . 10
| |
| 111 | 109, 110 | syl 14 |
. . . . . . . . 9
|
| 112 | 0cnd 8147 |
. . . . . . . . 9
| |
| 113 | apsym 8761 |
. . . . . . . . 9
| |
| 114 | 111, 112, 113 | syl2anc 411 |
. . . . . . . 8
|
| 115 | 106, 114 | mpbid 147 |
. . . . . . 7
|
| 116 | qapne 9842 |
. . . . . . . 8
| |
| 117 | 102, 109, 116 | syl2anc 411 |
. . . . . . 7
|
| 118 | 115, 117 | mpbid 147 |
. . . . . 6
|
| 119 | simpl 109 |
. . . . . . . . . 10
| |
| 120 | simpr 110 |
. . . . . . . . . 10
| |
| 121 | 119, 120 | neeq12d 2420 |
. . . . . . . . 9
|
| 122 | 119 | oveq2d 6023 |
. . . . . . . . . . 11
|
| 123 | 122 | fveq2d 5633 |
. . . . . . . . . 10
|
| 124 | 120 | oveq2d 6023 |
. . . . . . . . . . 11
|
| 125 | 124 | fveq2d 5633 |
. . . . . . . . . 10
|
| 126 | 123, 125 | breq12d 4096 |
. . . . . . . . 9
|
| 127 | 121, 126 | imbi12d 234 |
. . . . . . . 8
|
| 128 | 127 | rspc2gv 2919 |
. . . . . . 7
|
| 129 | 102, 109, 128 | syl2anc 411 |
. . . . . 6
|
| 130 | 92, 118, 129 | mp2d 47 |
. . . . 5
|
| 131 | 62, 63, 91, 130 | apdifflemr 16445 |
. . . 4
|
| 132 | 131 | ralrimiva 2603 |
. . 3
|
| 133 | 61, 132 | impbida 598 |
. 2
|
| 134 | 2, 133 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |