Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdiff Unicode version

Theorem apdiff 16347
Description: The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
Assertion
Ref Expression
apdiff  |-  ( A  e.  RR  ->  ( A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) ) )
Distinct variable group:    A, q, r

Proof of Theorem apdiff
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 breq2 4086 . . 3  |-  ( q  =  s  ->  ( A #  q  <->  A #  s )
)
21cbvralv 2765 . 2  |-  ( A. q  e.  QQ  A #  q 
<-> 
A. s  e.  QQ  A #  s )
3 simplll 533 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A  e.  RR )
43adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  A  e.  RR )
5 simplrl 535 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
q  e.  QQ )
65adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  q  e.  QQ )
7 simplrr 536 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
r  e.  QQ )
87adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  r  e.  QQ )
9 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  q  <  r )
10 breq2 4086 . . . . . . . . . 10  |-  ( s  =  ( ( q  +  r )  / 
2 )  ->  ( A #  s  <->  A #  ( (
q  +  r )  /  2 ) ) )
11 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A. s  e.  QQ  A #  s )
12 qaddcl 9818 . . . . . . . . . . . 12  |-  ( ( q  e.  QQ  /\  r  e.  QQ )  ->  ( q  +  r )  e.  QQ )
135, 7, 12syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  +  r )  e.  QQ )
14 2z 9462 . . . . . . . . . . . 12  |-  2  e.  ZZ
15 zq 9809 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
1614, 15mp1i 10 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
2  e.  QQ )
17 2ne0 9190 . . . . . . . . . . . 12  |-  2  =/=  0
1817a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
2  =/=  0 )
19 qdivcl 9826 . . . . . . . . . . 11  |-  ( ( ( q  +  r )  e.  QQ  /\  2  e.  QQ  /\  2  =/=  0 )  ->  (
( q  +  r )  /  2 )  e.  QQ )
2013, 16, 18, 19syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
)  e.  QQ )
2110, 11, 20rspcdva 2912 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A #  ( ( q  +  r )  /  2
) )
223recnd 8163 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  ->  A  e.  CC )
23 qcn 9817 . . . . . . . . . . 11  |-  ( ( ( q  +  r )  /  2 )  e.  QQ  ->  (
( q  +  r )  /  2 )  e.  CC )
2420, 23syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
)  e.  CC )
25 apsym 8741 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( q  +  r )  /  2
)  e.  CC )  ->  ( A #  (
( q  +  r )  /  2 )  <-> 
( ( q  +  r )  /  2
) #  A ) )
2622, 24, 25syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( A #  ( ( q  +  r )  /  2 )  <->  ( (
q  +  r )  /  2 ) #  A
) )
2721, 26mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
) #  A )
2827adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  (
( q  +  r )  /  2 ) #  A )
294, 6, 8, 9, 28apdifflemf 16345 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  q  <  r )  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) )
303adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  A  e.  RR )
317adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  r  e.  QQ )
325adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  q  e.  QQ )
33 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  r  <  q )
34 qcn 9817 . . . . . . . . . . . . 13  |-  ( q  e.  QQ  ->  q  e.  CC )
355, 34syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
q  e.  CC )
36 qcn 9817 . . . . . . . . . . . . 13  |-  ( r  e.  QQ  ->  r  e.  CC )
377, 36syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
r  e.  CC )
3835, 37addcomd 8285 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  +  r )  =  ( r  +  q ) )
3938oveq1d 6009 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( q  +  r )  /  2
)  =  ( ( r  +  q )  /  2 ) )
4039, 27eqbrtrrd 4106 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( ( r  +  q )  /  2
) #  A )
4140adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  (
( r  +  q )  /  2 ) #  A )
4230, 31, 32, 33, 41apdifflemf 16345 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  r ) ) #  ( abs `  ( A  -  q ) ) )
4322adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  A  e.  CC )
4431, 36syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  r  e.  CC )
4543, 44subcld 8445 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( A  -  r )  e.  CC )
4645abscld 11678 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  r ) )  e.  RR )
4746recnd 8163 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  r ) )  e.  CC )
4832, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  q  e.  CC )
4943, 48subcld 8445 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( A  -  q )  e.  CC )
5049abscld 11678 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  q ) )  e.  RR )
5150recnd 8163 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  q ) )  e.  CC )
52 apsym 8741 . . . . . . . 8  |-  ( ( ( abs `  ( A  -  r )
)  e.  CC  /\  ( abs `  ( A  -  q ) )  e.  CC )  -> 
( ( abs `  ( A  -  r )
) #  ( abs `  ( A  -  q )
)  <->  ( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )
5347, 51, 52syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  (
( abs `  ( A  -  r )
) #  ( abs `  ( A  -  q )
)  <->  ( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )
5442, 53mpbid 147 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  /\  q  =/=  r )  /\  r  <  q )  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) )
55 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
q  =/=  r )
56 qlttri2 9824 . . . . . . . 8  |-  ( ( q  e.  QQ  /\  r  e.  QQ )  ->  ( q  =/=  r  <->  ( q  <  r  \/  r  <  q ) ) )
575, 7, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  =/=  r  <->  ( q  <  r  \/  r  <  q ) ) )
5855, 57mpbid 147 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( q  <  r  \/  r  <  q ) )
5929, 54, 58mpjaodan 803 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  /\  ( q  e.  QQ  /\  r  e.  QQ ) )  /\  q  =/=  r )  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) )
6059ex 115 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. s  e.  QQ  A #  s )  /\  (
q  e.  QQ  /\  r  e.  QQ )
)  ->  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )
6160ralrimivva 2612 . . 3  |-  ( ( A  e.  RR  /\  A. s  e.  QQ  A #  s )  ->  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )
62 simpll 527 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  A  e.  RR )
63 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  s  e.  QQ )
64 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )
65 neg1rr 9204 . . . . . . . 8  |-  -u 1  e.  RR
66 neg1lt0 9206 . . . . . . . . 9  |-  -u 1  <  0
67 0lt1 8261 . . . . . . . . 9  |-  0  <  1
68 0re 8134 . . . . . . . . . 10  |-  0  e.  RR
69 1re 8133 . . . . . . . . . 10  |-  1  e.  RR
7065, 68, 69lttri 8239 . . . . . . . . 9  |-  ( (
-u 1  <  0  /\  0  <  1
)  ->  -u 1  <  1 )
7166, 67, 70mp2an 426 . . . . . . . 8  |-  -u 1  <  1
7265, 71ltneii 8231 . . . . . . 7  |-  -u 1  =/=  1
7372a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  -> 
-u 1  =/=  1
)
74 neg1z 9466 . . . . . . . 8  |-  -u 1  e.  ZZ
75 zq 9809 . . . . . . . 8  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
7674, 75mp1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  -> 
-u 1  e.  QQ )
77 1z 9460 . . . . . . . 8  |-  1  e.  ZZ
78 zq 9809 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
7977, 78mp1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  1  e.  QQ )
80 simpl 109 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  q  =  -u 1 )
81 simpr 110 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  r  = 
1 )
8280, 81neeq12d 2420 . . . . . . . . 9  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( q  =/=  r  <->  -u 1  =/=  1
) )
8380oveq2d 6010 . . . . . . . . . . 11  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( A  -  q )  =  ( A  -  -u 1
) )
8483fveq2d 5627 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( abs `  ( A  -  q
) )  =  ( abs `  ( A  -  -u 1 ) ) )
8581oveq2d 6010 . . . . . . . . . . 11  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( A  -  r )  =  ( A  -  1 ) )
8685fveq2d 5627 . . . . . . . . . 10  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  1 ) ) )
8784, 86breq12d 4095 . . . . . . . . 9  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) )  <-> 
( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) ) )
8882, 87imbi12d 234 . . . . . . . 8  |-  ( ( q  =  -u 1  /\  r  =  1
)  ->  ( (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) )  <->  ( -u 1  =/=  1  ->  ( abs `  ( A  -  -u 1
) ) #  ( abs `  ( A  -  1 ) ) ) ) )
8988rspc2gv 2919 . . . . . . 7  |-  ( (
-u 1  e.  QQ  /\  1  e.  QQ )  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( -u 1  =/=  1  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) ) ) )
9076, 79, 89syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( -u 1  =/=  1  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) ) ) )
9164, 73, 90mp2d 47 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
92 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )
93 2cnd 9171 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  2  e.  CC )
94 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s  e.  QQ )
95 qcn 9817 . . . . . . . . . 10  |-  ( s  e.  QQ  ->  s  e.  CC )
9694, 95syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s  e.  CC )
97 2ap0 9191 . . . . . . . . . 10  |-  2 #  0
9897a1i 9 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  2 #  0
)
99 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s  =/=  0 )
100 0z 9445 . . . . . . . . . . . 12  |-  0  e.  ZZ
101 zq 9809 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
102100, 101mp1i 10 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0  e.  QQ )
103 qapne 9822 . . . . . . . . . . 11  |-  ( ( s  e.  QQ  /\  0  e.  QQ )  ->  ( s #  0  <->  s  =/=  0 ) )
10494, 102, 103syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( s #  0 
<->  s  =/=  0 ) )
10599, 104mpbird 167 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  s #  0
)
10693, 96, 98, 105mulap0d 8793 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 2  x.  s ) #  0 )
10714, 15mp1i 10 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  2  e.  QQ )
108 qmulcl 9820 . . . . . . . . . . 11  |-  ( ( 2  e.  QQ  /\  s  e.  QQ )  ->  ( 2  x.  s
)  e.  QQ )
109107, 94, 108syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 2  x.  s )  e.  QQ )
110 qcn 9817 . . . . . . . . . 10  |-  ( ( 2  x.  s )  e.  QQ  ->  (
2  x.  s )  e.  CC )
111109, 110syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 2  x.  s )  e.  CC )
112 0cnd 8127 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0  e.  CC )
113 apsym 8741 . . . . . . . . 9  |-  ( ( ( 2  x.  s
)  e.  CC  /\  0  e.  CC )  ->  ( ( 2  x.  s ) #  0  <->  0 #  ( 2  x.  s
) ) )
114111, 112, 113syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( (
2  x.  s ) #  0  <->  0 #  ( 2  x.  s ) ) )
115106, 114mpbid 147 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0 #  (
2  x.  s ) )
116 qapne 9822 . . . . . . . 8  |-  ( ( 0  e.  QQ  /\  ( 2  x.  s
)  e.  QQ )  ->  ( 0 #  ( 2  x.  s )  <->  0  =/=  ( 2  x.  s ) ) )
117102, 109, 116syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( 0 #  ( 2  x.  s
)  <->  0  =/=  (
2  x.  s ) ) )
118115, 117mpbid 147 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  0  =/=  ( 2  x.  s
) )
119 simpl 109 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  q  =  0 )
120 simpr 110 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  r  =  ( 2  x.  s ) )
121119, 120neeq12d 2420 . . . . . . . . 9  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( q  =/=  r  <->  0  =/=  (
2  x.  s ) ) )
122119oveq2d 6010 . . . . . . . . . . 11  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( A  -  q )  =  ( A  -  0 ) )
123122fveq2d 5627 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( abs `  ( A  -  q )
)  =  ( abs `  ( A  -  0 ) ) )
124120oveq2d 6010 . . . . . . . . . . 11  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( A  -  r )  =  ( A  -  ( 2  x.  s ) ) )
125124fveq2d 5627 . . . . . . . . . 10  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  (
2  x.  s ) ) ) )
126123, 125breq12d 4095 . . . . . . . . 9  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) )  <->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  (
2  x.  s ) ) ) ) )
127121, 126imbi12d 234 . . . . . . . 8  |-  ( ( q  =  0  /\  r  =  ( 2  x.  s ) )  ->  ( ( q  =/=  r  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) )  <->  ( 0  =/=  ( 2  x.  s
)  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  (
2  x.  s ) ) ) ) ) )
128127rspc2gv 2919 . . . . . . 7  |-  ( ( 0  e.  QQ  /\  ( 2  x.  s
)  e.  QQ )  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( 0  =/=  (
2  x.  s )  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  s ) ) ) ) ) )
129102, 109, 128syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) )  -> 
( 0  =/=  (
2  x.  s )  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  s ) ) ) ) ) )
13092, 118, 129mp2d 47 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  ( q  =/=  r  ->  ( abs `  ( A  -  q
) ) #  ( abs `  ( A  -  r
) ) ) )  /\  s  e.  QQ )  /\  s  =/=  0
)  ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  (
2  x.  s ) ) ) )
13162, 63, 91, 130apdifflemr 16346 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  /\  s  e.  QQ )  ->  A #  s )
132131ralrimiva 2603 . . 3  |-  ( ( A  e.  RR  /\  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) )  ->  A. s  e.  QQ  A #  s )
13361, 132impbida 598 . 2  |-  ( A  e.  RR  ->  ( A. s  e.  QQ  A #  s  <->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) ) )
1342, 133bitrid 192 1  |-  ( A  e.  RR  ->  ( A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
q  =/=  r  -> 
( abs `  ( A  -  q )
) #  ( abs `  ( A  -  r )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    < clt 8169    - cmin 8305   -ucneg 8306   # cap 8716    / cdiv 8807   2c2 9149   ZZcz 9434   QQcq 9802   abscabs 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator