ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemim Unicode version

Theorem ennnfonelemim 12641
Description: Lemma for ennnfone 12642. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfonelemim  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
Distinct variable groups:    A, f, j, n    x, A, y, n    f, k, j, n    y, j
Allowed substitution hint:    A( k)

Proof of Theorem ennnfonelemim
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 nn0ennn 10525 . . . 4  |-  NN0  ~~  NN
21ensymi 6841 . . 3  |-  NN  ~~  NN0
3 entr 6843 . . 3  |-  ( ( A  ~~  NN  /\  NN  ~~  NN0 )  ->  A  ~~  NN0 )
42, 3mpan2 425 . 2  |-  ( A 
~~  NN  ->  A  ~~  NN0 )
5 bren 6806 . . . 4  |-  ( A 
~~  NN0  <->  E. g  g : A -1-1-onto-> NN0 )
65biimpi 120 . . 3  |-  ( A 
~~  NN0  ->  E. g 
g : A -1-1-onto-> NN0 )
7 f1of 5504 . . . . . . . . . . 11  |-  ( g : A -1-1-onto-> NN0  ->  g : A
--> NN0 )
87adantr 276 . . . . . . . . . 10  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  g : A --> NN0 )
9 simprl 529 . . . . . . . . . 10  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  A )
108, 9ffvelcdmd 5698 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  x )  e.  NN0 )
1110nn0zd 9446 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  x )  e.  ZZ )
12 simprr 531 . . . . . . . . . 10  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  A )
138, 12ffvelcdmd 5698 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  y )  e.  NN0 )
1413nn0zd 9446 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  y )  e.  ZZ )
15 zdceq 9401 . . . . . . . 8  |-  ( ( ( g `  x
)  e.  ZZ  /\  ( g `  y
)  e.  ZZ )  -> DECID 
( g `  x
)  =  ( g `
 y ) )
1611, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  ( g `  x
)  =  ( g `
 y ) )
17 dff1o6 5823 . . . . . . . . . . . . 13  |-  ( g : A -1-1-onto-> NN0  <->  ( g  Fn  A  /\  ran  g  =  NN0  /\  A. x  e.  A  A. y  e.  A  ( (
g `  x )  =  ( g `  y )  ->  x  =  y ) ) )
1817simp3bi 1016 . . . . . . . . . . . 12  |-  ( g : A -1-1-onto-> NN0  ->  A. x  e.  A  A. y  e.  A  ( (
g `  x )  =  ( g `  y )  ->  x  =  y ) )
1918r19.21bi 2585 . . . . . . . . . . 11  |-  ( ( g : A -1-1-onto-> NN0  /\  x  e.  A )  ->  A. y  e.  A  ( ( g `  x )  =  ( g `  y )  ->  x  =  y ) )
2019r19.21bi 2585 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> NN0  /\  x  e.  A )  /\  y  e.  A
)  ->  ( (
g `  x )  =  ( g `  y )  ->  x  =  y ) )
2120anasss 399 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( g `  x
)  =  ( g `
 y )  ->  x  =  y )
)
22 fveq2 5558 . . . . . . . . 9  |-  ( x  =  y  ->  (
g `  x )  =  ( g `  y ) )
2321, 22impbid1 142 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( g `  x
)  =  ( g `
 y )  <->  x  =  y ) )
2423dcbid 839 . . . . . . 7  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (DECID  (
g `  x )  =  ( g `  y )  <-> DECID  x  =  y
) )
2516, 24mpbid 147 . . . . . 6  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  x  =  y
)
2625ralrimivva 2579 . . . . 5  |-  ( g : A -1-1-onto-> NN0  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
27 f1ocnv 5517 . . . . . . 7  |-  ( g : A -1-1-onto-> NN0  ->  `' g : NN0
-1-1-onto-> A )
28 f1ofo 5511 . . . . . . 7  |-  ( `' g : NN0 -1-1-onto-> A  ->  `' g : NN0 -onto-> A )
2927, 28syl 14 . . . . . 6  |-  ( g : A -1-1-onto-> NN0  ->  `' g : NN0 -onto-> A )
30 peano2nn0 9289 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3130adantl 277 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  -> 
( n  +  1 )  e.  NN0 )
32 elfznn0 10189 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... n )  ->  j  e.  NN0 )
3332adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  e.  NN0 )
3433nn0red 9303 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  e.  RR )
35 elfzle2 10103 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... n )  ->  j  <_  n )
3635adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  <_  n
)
37 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  n  e.  NN0 )
38 nn0leltp1 9389 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  NN0  /\  n  e.  NN0 )  -> 
( j  <_  n  <->  j  <  ( n  + 
1 ) ) )
3933, 37, 38syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( j  <_  n 
<->  j  <  ( n  +  1 ) ) )
4036, 39mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  <  (
n  +  1 ) )
4134, 40gtned 8139 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( n  + 
1 )  =/=  j
)
4241neneqd 2388 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  -.  ( n  +  1 )  =  j )
43 dff1o6 5823 . . . . . . . . . . . . . . 15  |-  ( `' g : NN0 -1-1-onto-> A  <->  ( `' g  Fn  NN0  /\  ran  `' g  =  A  /\  A. x  e.  NN0  A. y  e.  NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )
) )
4427, 43sylib 122 . . . . . . . . . . . . . 14  |-  ( g : A -1-1-onto-> NN0  ->  ( `' g  Fn  NN0  /\  ran  `' g  =  A  /\  A. x  e.  NN0  A. y  e.  NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )
) )
4544simp3d 1013 . . . . . . . . . . . . 13  |-  ( g : A -1-1-onto-> NN0  ->  A. x  e.  NN0  A. y  e. 
NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )
)
4645ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  A. x  e.  NN0  A. y  e.  NN0  (
( `' g `  x )  =  ( `' g `  y
)  ->  x  =  y ) )
4731adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( n  + 
1 )  e.  NN0 )
48 fveqeq2 5567 . . . . . . . . . . . . . . 15  |-  ( x  =  ( n  + 
1 )  ->  (
( `' g `  x )  =  ( `' g `  y
)  <->  ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  y ) ) )
49 eqeq1 2203 . . . . . . . . . . . . . . 15  |-  ( x  =  ( n  + 
1 )  ->  (
x  =  y  <->  ( n  +  1 )  =  y ) )
5048, 49imbi12d 234 . . . . . . . . . . . . . 14  |-  ( x  =  ( n  + 
1 )  ->  (
( ( `' g `
 x )  =  ( `' g `  y )  ->  x  =  y )  <->  ( ( `' g `  (
n  +  1 ) )  =  ( `' g `  y )  ->  ( n  + 
1 )  =  y ) ) )
51 fveq2 5558 . . . . . . . . . . . . . . . 16  |-  ( y  =  j  ->  ( `' g `  y
)  =  ( `' g `  j ) )
5251eqeq2d 2208 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  (
( `' g `  ( n  +  1
) )  =  ( `' g `  y
)  <->  ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  j ) ) )
53 eqeq2 2206 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  (
( n  +  1 )  =  y  <->  ( n  +  1 )  =  j ) )
5452, 53imbi12d 234 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  (
( ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  y )  ->  (
n  +  1 )  =  y )  <->  ( ( `' g `  (
n  +  1 ) )  =  ( `' g `  j )  ->  ( n  + 
1 )  =  j ) ) )
5550, 54rspc2v 2881 . . . . . . . . . . . . 13  |-  ( ( ( n  +  1 )  e.  NN0  /\  j  e.  NN0 )  -> 
( A. x  e. 
NN0  A. y  e.  NN0  ( ( `' g `
 x )  =  ( `' g `  y )  ->  x  =  y )  -> 
( ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  j )  ->  (
n  +  1 )  =  j ) ) )
5647, 33, 55syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( A. x  e.  NN0  A. y  e. 
NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )  ->  ( ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  j )  ->  (
n  +  1 )  =  j ) ) )
5746, 56mpd 13 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( ( `' g `  ( n  +  1 ) )  =  ( `' g `
 j )  -> 
( n  +  1 )  =  j ) )
5842, 57mtod 664 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  -.  ( `' g `  ( n  +  1 ) )  =  ( `' g `
 j ) )
5958neqned 2374 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( `' g `
 ( n  + 
1 ) )  =/=  ( `' g `  j ) )
6059ralrimiva 2570 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  ->  A. j  e.  (
0 ... n ) ( `' g `  (
n  +  1 ) )  =/=  ( `' g `  j ) )
61 fveq2 5558 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  ( `' g `  k
)  =  ( `' g `  ( n  +  1 ) ) )
6261neeq1d 2385 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  (
( `' g `  k )  =/=  ( `' g `  j
)  <->  ( `' g `
 ( n  + 
1 ) )  =/=  ( `' g `  j ) ) )
6362ralbidv 2497 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  ( A. j  e.  (
0 ... n ) ( `' g `  k
)  =/=  ( `' g `  j )  <->  A. j  e.  (
0 ... n ) ( `' g `  (
n  +  1 ) )  =/=  ( `' g `  j ) ) )
6463rspcev 2868 . . . . . . . 8  |-  ( ( ( n  +  1 )  e.  NN0  /\  A. j  e.  ( 0 ... n ) ( `' g `  (
n  +  1 ) )  =/=  ( `' g `  j ) )  ->  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( `' g `
 k )  =/=  ( `' g `  j ) )
6531, 60, 64syl2anc 411 . . . . . . 7  |-  ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  ->  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( `' g `  k
)  =/=  ( `' g `  j ) )
6665ralrimiva 2570 . . . . . 6  |-  ( g : A -1-1-onto-> NN0  ->  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( `' g `  k )  =/=  ( `' g `  j
) )
67 cnvexg 5207 . . . . . . . 8  |-  ( g  e.  _V  ->  `' g  e.  _V )
6867elv 2767 . . . . . . 7  |-  `' g  e.  _V
69 foeq1 5476 . . . . . . . 8  |-  ( f  =  `' g  -> 
( f : NN0 -onto-> A  <->  `' g : NN0 -onto-> A ) )
70 fveq1 5557 . . . . . . . . . . 11  |-  ( f  =  `' g  -> 
( f `  k
)  =  ( `' g `  k ) )
71 fveq1 5557 . . . . . . . . . . 11  |-  ( f  =  `' g  -> 
( f `  j
)  =  ( `' g `  j ) )
7270, 71neeq12d 2387 . . . . . . . . . 10  |-  ( f  =  `' g  -> 
( ( f `  k )  =/=  (
f `  j )  <->  ( `' g `  k
)  =/=  ( `' g `  j ) ) )
7372rexralbidv 2523 . . . . . . . . 9  |-  ( f  =  `' g  -> 
( E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( f `  k
)  =/=  ( f `
 j )  <->  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( `' g `
 k )  =/=  ( `' g `  j ) ) )
7473ralbidv 2497 . . . . . . . 8  |-  ( f  =  `' g  -> 
( A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j )  <->  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( `' g `  k )  =/=  ( `' g `  j
) ) )
7569, 74anbi12d 473 . . . . . . 7  |-  ( f  =  `' g  -> 
( ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( f `  k
)  =/=  ( f `
 j ) )  <-> 
( `' g : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( `' g `  k )  =/=  ( `' g `  j
) ) ) )
7668, 75spcev 2859 . . . . . 6  |-  ( ( `' g : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( `' g `  k
)  =/=  ( `' g `  j ) )  ->  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) )
7729, 66, 76syl2anc 411 . . . . 5  |-  ( g : A -1-1-onto-> NN0  ->  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) )
7826, 77jca 306 . . . 4  |-  ( g : A -1-1-onto-> NN0  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
7978adantl 277 . . 3  |-  ( ( A  ~~  NN0  /\  g : A -1-1-onto-> NN0 )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) ) )
806, 79exlimddv 1913 . 2  |-  ( A 
~~  NN0  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
814, 80syl 14 1  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   _Vcvv 2763   class class class wbr 4033   `'ccnv 4662   ran crn 4664    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922    ~~ cen 6797   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   NNcn 8990   NN0cn0 9249   ZZcz 9326   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  ennnfone  12642
  Copyright terms: Public domain W3C validator