ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemim Unicode version

Theorem ennnfonelemim 12995
Description: Lemma for ennnfone 12996. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfonelemim  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
Distinct variable groups:    A, f, j, n    x, A, y, n    f, k, j, n    y, j
Allowed substitution hint:    A( k)

Proof of Theorem ennnfonelemim
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 nn0ennn 10655 . . . 4  |-  NN0  ~~  NN
21ensymi 6934 . . 3  |-  NN  ~~  NN0
3 entr 6936 . . 3  |-  ( ( A  ~~  NN  /\  NN  ~~  NN0 )  ->  A  ~~  NN0 )
42, 3mpan2 425 . 2  |-  ( A 
~~  NN  ->  A  ~~  NN0 )
5 bren 6895 . . . 4  |-  ( A 
~~  NN0  <->  E. g  g : A -1-1-onto-> NN0 )
65biimpi 120 . . 3  |-  ( A 
~~  NN0  ->  E. g 
g : A -1-1-onto-> NN0 )
7 f1of 5572 . . . . . . . . . . 11  |-  ( g : A -1-1-onto-> NN0  ->  g : A
--> NN0 )
87adantr 276 . . . . . . . . . 10  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  g : A --> NN0 )
9 simprl 529 . . . . . . . . . 10  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  A )
108, 9ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  x )  e.  NN0 )
1110nn0zd 9567 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  x )  e.  ZZ )
12 simprr 531 . . . . . . . . . 10  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  A )
138, 12ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  y )  e.  NN0 )
1413nn0zd 9567 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
g `  y )  e.  ZZ )
15 zdceq 9522 . . . . . . . 8  |-  ( ( ( g `  x
)  e.  ZZ  /\  ( g `  y
)  e.  ZZ )  -> DECID 
( g `  x
)  =  ( g `
 y ) )
1611, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  ( g `  x
)  =  ( g `
 y ) )
17 dff1o6 5900 . . . . . . . . . . . . 13  |-  ( g : A -1-1-onto-> NN0  <->  ( g  Fn  A  /\  ran  g  =  NN0  /\  A. x  e.  A  A. y  e.  A  ( (
g `  x )  =  ( g `  y )  ->  x  =  y ) ) )
1817simp3bi 1038 . . . . . . . . . . . 12  |-  ( g : A -1-1-onto-> NN0  ->  A. x  e.  A  A. y  e.  A  ( (
g `  x )  =  ( g `  y )  ->  x  =  y ) )
1918r19.21bi 2618 . . . . . . . . . . 11  |-  ( ( g : A -1-1-onto-> NN0  /\  x  e.  A )  ->  A. y  e.  A  ( ( g `  x )  =  ( g `  y )  ->  x  =  y ) )
2019r19.21bi 2618 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> NN0  /\  x  e.  A )  /\  y  e.  A
)  ->  ( (
g `  x )  =  ( g `  y )  ->  x  =  y ) )
2120anasss 399 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( g `  x
)  =  ( g `
 y )  ->  x  =  y )
)
22 fveq2 5627 . . . . . . . . 9  |-  ( x  =  y  ->  (
g `  x )  =  ( g `  y ) )
2321, 22impbid1 142 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( g `  x
)  =  ( g `
 y )  <->  x  =  y ) )
2423dcbid 843 . . . . . . 7  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (DECID  (
g `  x )  =  ( g `  y )  <-> DECID  x  =  y
) )
2516, 24mpbid 147 . . . . . 6  |-  ( ( g : A -1-1-onto-> NN0  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  x  =  y
)
2625ralrimivva 2612 . . . . 5  |-  ( g : A -1-1-onto-> NN0  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
27 f1ocnv 5585 . . . . . . 7  |-  ( g : A -1-1-onto-> NN0  ->  `' g : NN0
-1-1-onto-> A )
28 f1ofo 5579 . . . . . . 7  |-  ( `' g : NN0 -1-1-onto-> A  ->  `' g : NN0 -onto-> A )
2927, 28syl 14 . . . . . 6  |-  ( g : A -1-1-onto-> NN0  ->  `' g : NN0 -onto-> A )
30 peano2nn0 9409 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3130adantl 277 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  -> 
( n  +  1 )  e.  NN0 )
32 elfznn0 10310 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... n )  ->  j  e.  NN0 )
3332adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  e.  NN0 )
3433nn0red 9423 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  e.  RR )
35 elfzle2 10224 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... n )  ->  j  <_  n )
3635adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  <_  n
)
37 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  n  e.  NN0 )
38 nn0leltp1 9510 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  NN0  /\  n  e.  NN0 )  -> 
( j  <_  n  <->  j  <  ( n  + 
1 ) ) )
3933, 37, 38syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( j  <_  n 
<->  j  <  ( n  +  1 ) ) )
4036, 39mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  j  <  (
n  +  1 ) )
4134, 40gtned 8259 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( n  + 
1 )  =/=  j
)
4241neneqd 2421 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  -.  ( n  +  1 )  =  j )
43 dff1o6 5900 . . . . . . . . . . . . . . 15  |-  ( `' g : NN0 -1-1-onto-> A  <->  ( `' g  Fn  NN0  /\  ran  `' g  =  A  /\  A. x  e.  NN0  A. y  e.  NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )
) )
4427, 43sylib 122 . . . . . . . . . . . . . 14  |-  ( g : A -1-1-onto-> NN0  ->  ( `' g  Fn  NN0  /\  ran  `' g  =  A  /\  A. x  e.  NN0  A. y  e.  NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )
) )
4544simp3d 1035 . . . . . . . . . . . . 13  |-  ( g : A -1-1-onto-> NN0  ->  A. x  e.  NN0  A. y  e. 
NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )
)
4645ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  A. x  e.  NN0  A. y  e.  NN0  (
( `' g `  x )  =  ( `' g `  y
)  ->  x  =  y ) )
4731adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( n  + 
1 )  e.  NN0 )
48 fveqeq2 5636 . . . . . . . . . . . . . . 15  |-  ( x  =  ( n  + 
1 )  ->  (
( `' g `  x )  =  ( `' g `  y
)  <->  ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  y ) ) )
49 eqeq1 2236 . . . . . . . . . . . . . . 15  |-  ( x  =  ( n  + 
1 )  ->  (
x  =  y  <->  ( n  +  1 )  =  y ) )
5048, 49imbi12d 234 . . . . . . . . . . . . . 14  |-  ( x  =  ( n  + 
1 )  ->  (
( ( `' g `
 x )  =  ( `' g `  y )  ->  x  =  y )  <->  ( ( `' g `  (
n  +  1 ) )  =  ( `' g `  y )  ->  ( n  + 
1 )  =  y ) ) )
51 fveq2 5627 . . . . . . . . . . . . . . . 16  |-  ( y  =  j  ->  ( `' g `  y
)  =  ( `' g `  j ) )
5251eqeq2d 2241 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  (
( `' g `  ( n  +  1
) )  =  ( `' g `  y
)  <->  ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  j ) ) )
53 eqeq2 2239 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  (
( n  +  1 )  =  y  <->  ( n  +  1 )  =  j ) )
5452, 53imbi12d 234 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  (
( ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  y )  ->  (
n  +  1 )  =  y )  <->  ( ( `' g `  (
n  +  1 ) )  =  ( `' g `  j )  ->  ( n  + 
1 )  =  j ) ) )
5550, 54rspc2v 2920 . . . . . . . . . . . . 13  |-  ( ( ( n  +  1 )  e.  NN0  /\  j  e.  NN0 )  -> 
( A. x  e. 
NN0  A. y  e.  NN0  ( ( `' g `
 x )  =  ( `' g `  y )  ->  x  =  y )  -> 
( ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  j )  ->  (
n  +  1 )  =  j ) ) )
5647, 33, 55syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( A. x  e.  NN0  A. y  e. 
NN0  ( ( `' g `  x )  =  ( `' g `
 y )  ->  x  =  y )  ->  ( ( `' g `
 ( n  + 
1 ) )  =  ( `' g `  j )  ->  (
n  +  1 )  =  j ) ) )
5746, 56mpd 13 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( ( `' g `  ( n  +  1 ) )  =  ( `' g `
 j )  -> 
( n  +  1 )  =  j ) )
5842, 57mtod 667 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  -.  ( `' g `  ( n  +  1 ) )  =  ( `' g `
 j ) )
5958neqned 2407 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  /\  j  e.  (
0 ... n ) )  ->  ( `' g `
 ( n  + 
1 ) )  =/=  ( `' g `  j ) )
6059ralrimiva 2603 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  ->  A. j  e.  (
0 ... n ) ( `' g `  (
n  +  1 ) )  =/=  ( `' g `  j ) )
61 fveq2 5627 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  ( `' g `  k
)  =  ( `' g `  ( n  +  1 ) ) )
6261neeq1d 2418 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  (
( `' g `  k )  =/=  ( `' g `  j
)  <->  ( `' g `
 ( n  + 
1 ) )  =/=  ( `' g `  j ) ) )
6362ralbidv 2530 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  ( A. j  e.  (
0 ... n ) ( `' g `  k
)  =/=  ( `' g `  j )  <->  A. j  e.  (
0 ... n ) ( `' g `  (
n  +  1 ) )  =/=  ( `' g `  j ) ) )
6463rspcev 2907 . . . . . . . 8  |-  ( ( ( n  +  1 )  e.  NN0  /\  A. j  e.  ( 0 ... n ) ( `' g `  (
n  +  1 ) )  =/=  ( `' g `  j ) )  ->  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( `' g `
 k )  =/=  ( `' g `  j ) )
6531, 60, 64syl2anc 411 . . . . . . 7  |-  ( ( g : A -1-1-onto-> NN0  /\  n  e.  NN0 )  ->  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( `' g `  k
)  =/=  ( `' g `  j ) )
6665ralrimiva 2603 . . . . . 6  |-  ( g : A -1-1-onto-> NN0  ->  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( `' g `  k )  =/=  ( `' g `  j
) )
67 cnvexg 5266 . . . . . . . 8  |-  ( g  e.  _V  ->  `' g  e.  _V )
6867elv 2803 . . . . . . 7  |-  `' g  e.  _V
69 foeq1 5544 . . . . . . . 8  |-  ( f  =  `' g  -> 
( f : NN0 -onto-> A  <->  `' g : NN0 -onto-> A ) )
70 fveq1 5626 . . . . . . . . . . 11  |-  ( f  =  `' g  -> 
( f `  k
)  =  ( `' g `  k ) )
71 fveq1 5626 . . . . . . . . . . 11  |-  ( f  =  `' g  -> 
( f `  j
)  =  ( `' g `  j ) )
7270, 71neeq12d 2420 . . . . . . . . . 10  |-  ( f  =  `' g  -> 
( ( f `  k )  =/=  (
f `  j )  <->  ( `' g `  k
)  =/=  ( `' g `  j ) ) )
7372rexralbidv 2556 . . . . . . . . 9  |-  ( f  =  `' g  -> 
( E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( f `  k
)  =/=  ( f `
 j )  <->  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( `' g `
 k )  =/=  ( `' g `  j ) ) )
7473ralbidv 2530 . . . . . . . 8  |-  ( f  =  `' g  -> 
( A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j )  <->  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( `' g `  k )  =/=  ( `' g `  j
) ) )
7569, 74anbi12d 473 . . . . . . 7  |-  ( f  =  `' g  -> 
( ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( f `  k
)  =/=  ( f `
 j ) )  <-> 
( `' g : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( `' g `  k )  =/=  ( `' g `  j
) ) ) )
7668, 75spcev 2898 . . . . . 6  |-  ( ( `' g : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( `' g `  k
)  =/=  ( `' g `  j ) )  ->  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) )
7729, 66, 76syl2anc 411 . . . . 5  |-  ( g : A -1-1-onto-> NN0  ->  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) )
7826, 77jca 306 . . . 4  |-  ( g : A -1-1-onto-> NN0  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
7978adantl 277 . . 3  |-  ( ( A  ~~  NN0  /\  g : A -1-1-onto-> NN0 )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) ) )
806, 79exlimddv 1945 . 2  |-  ( A 
~~  NN0  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
814, 80syl 14 1  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509   _Vcvv 2799   class class class wbr 4083   `'ccnv 4718   ran crn 4720    Fn wfn 5313   -->wf 5314   -onto->wfo 5316   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001    ~~ cen 6885   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   NNcn 9110   NN0cn0 9369   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-er 6680  df-en 6888  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  ennnfone  12996
  Copyright terms: Public domain W3C validator