ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr Unicode version

Theorem isnzr 13399
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o  |-  .1.  =  ( 1r `  R )
isnzr.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isnzr  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  .1.  =/=  .0.  )
)

Proof of Theorem isnzr
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5527 . . . 4  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
2 isnzr.o . . . 4  |-  .1.  =  ( 1r `  R )
31, 2eqtr4di 2238 . . 3  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
4 fveq2 5527 . . . 4  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
5 isnzr.z . . . 4  |-  .0.  =  ( 0g `  R )
64, 5eqtr4di 2238 . . 3  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
73, 6neeq12d 2377 . 2  |-  ( r  =  R  ->  (
( 1r `  r
)  =/=  ( 0g
`  r )  <->  .1.  =/=  .0.  ) )
8 df-nzr 13398 . 2  |- NzRing  =  {
r  e.  Ring  |  ( 1r `  r )  =/=  ( 0g `  r ) }
97, 8elrab2 2908 1  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  .1.  =/=  .0.  )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158    =/= wne 2357   ` cfv 5228   0gc0g 12722   1rcur 13206   Ringcrg 13243  NzRingcnzr 13397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-rex 2471  df-rab 2474  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-nzr 13398
This theorem is referenced by:  nzrnz  13400  ringelnzr  13402  subrgnzr  13457  zringnzr  13749
  Copyright terms: Public domain W3C validator