ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr Unicode version

Theorem isnzr 13677
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o  |-  .1.  =  ( 1r `  R )
isnzr.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isnzr  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  .1.  =/=  .0.  )
)

Proof of Theorem isnzr
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . 4  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
2 isnzr.o . . . 4  |-  .1.  =  ( 1r `  R )
31, 2eqtr4di 2244 . . 3  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
4 fveq2 5554 . . . 4  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
5 isnzr.z . . . 4  |-  .0.  =  ( 0g `  R )
64, 5eqtr4di 2244 . . 3  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
73, 6neeq12d 2384 . 2  |-  ( r  =  R  ->  (
( 1r `  r
)  =/=  ( 0g
`  r )  <->  .1.  =/=  .0.  ) )
8 df-nzr 13676 . 2  |- NzRing  =  {
r  e.  Ring  |  ( 1r `  r )  =/=  ( 0g `  r ) }
97, 8elrab2 2919 1  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  .1.  =/=  .0.  )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   ` cfv 5254   0gc0g 12867   1rcur 13455   Ringcrg 13492  NzRingcnzr 13675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-nzr 13676
This theorem is referenced by:  nzrnz  13678  isnzr2  13680  opprnzrbg  13681  ringelnzr  13683  subrgnzr  13738  zringnzr  14090
  Copyright terms: Public domain W3C validator