![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neneqd | Unicode version |
Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
neneqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
neneqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-ne 2283 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-ne 2283 |
This theorem is referenced by: neneq 2304 necon2bi 2337 necon2i 2338 pm2.21ddne 2365 nelrdva 2860 neq0r 3343 0inp0 4050 pwntru 4082 nndceq0 4491 frecabcl 6250 frecsuclem 6257 nnsucsssuc 6342 phpm 6712 diffisn 6740 en2eqpr 6754 fival 6810 omp1eomlem 6931 difinfsnlem 6936 difinfsn 6937 ctmlemr 6945 fodjuomnilemdc 6966 indpi 7098 nqnq0pi 7194 ltxrlt 7754 sup3exmid 8625 elnnz 8968 xrnemnf 9457 xrnepnf 9458 xrlttri3 9476 nltpnft 9490 ngtmnft 9493 xrpnfdc 9518 xrmnfdc 9519 xleaddadd 9563 fzprval 9755 fxnn0nninf 10104 iseqf1olemklt 10151 seq3f1olemqsumkj 10164 expnnval 10189 xrmaxrecl 10916 fsumcl2lem 11059 dvdsle 11390 mod2eq1n2dvds 11424 nndvdslegcd 11502 gcdnncl 11504 divgcdnn 11511 sqgcd 11563 eucalgf 11582 eucalginv 11583 lcmeq0 11598 lcmgcdlem 11604 qredeu 11624 rpdvds 11626 cncongr2 11631 divnumden 11719 divdenle 11720 phibndlem 11737 ennnfonelemk 11758 ennnfonelemjn 11760 ennnfonelemp1 11764 ennnfonelemim 11782 isxmet2d 12337 nnsf 12891 peano4nninf 12892 exmidsbthrlem 12909 refeq 12915 trilpolemeq1 12925 |
Copyright terms: Public domain | W3C validator |