ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq1d Unicode version

Theorem neeq1d 2396
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
neeq1d  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )

Proof of Theorem neeq1d
StepHypRef Expression
1 neeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 neeq1 2391 . 2  |-  ( A  =  B  ->  ( A  =/=  C  <->  B  =/=  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    =/= wne 2378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-ne 2379
This theorem is referenced by:  neeq12d  2398  eqnetrd  2402  prnzg  3768  pw2f1odclem  6956  hashprg  10990  algcvg  12485  algcvga  12488  eucalgcvga  12495  rpdvds  12536  phibndlem  12653  dfphi2  12657  pcaddlem  12777  ennnfoneleminc  12897  ennnfonelemex  12900  ennnfonelemhom  12901  ennnfonelemnn0  12908  ennnfonelemr  12909  ennnfonelemim  12910  ctinfomlemom  12913  setscomd  12988  lgsne0  15630  dceqnconst  16201  dcapnconst  16202  nconstwlpolem  16206
  Copyright terms: Public domain W3C validator