ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq1d Unicode version

Theorem neeq1d 2354
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
neeq1d  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )

Proof of Theorem neeq1d
StepHypRef Expression
1 neeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 neeq1 2349 . 2  |-  ( A  =  B  ->  ( A  =/=  C  <->  B  =/=  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by:  neeq12d  2356  eqnetrd  2360  prnzg  3700  hashprg  10721  algcvg  11980  algcvga  11983  eucalgcvga  11990  rpdvds  12031  phibndlem  12148  dfphi2  12152  pcaddlem  12270  ennnfoneleminc  12344  ennnfonelemex  12347  ennnfonelemhom  12348  ennnfonelemnn0  12355  ennnfonelemr  12356  ennnfonelemim  12357  ctinfomlemom  12360  lgsne0  13579  dceqnconst  13938  dcapnconst  13939  nconstwlpolem  13943
  Copyright terms: Public domain W3C validator