ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq1d Unicode version

Theorem neeq1d 2393
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
neeq1d  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )

Proof of Theorem neeq1d
StepHypRef Expression
1 neeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 neeq1 2388 . 2  |-  ( A  =  B  ->  ( A  =/=  C  <->  B  =/=  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    =/= wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-ne 2376
This theorem is referenced by:  neeq12d  2395  eqnetrd  2399  prnzg  3756  pw2f1odclem  6930  hashprg  10951  algcvg  12341  algcvga  12344  eucalgcvga  12351  rpdvds  12392  phibndlem  12509  dfphi2  12513  pcaddlem  12633  ennnfoneleminc  12753  ennnfonelemex  12756  ennnfonelemhom  12757  ennnfonelemnn0  12764  ennnfonelemr  12765  ennnfonelemim  12766  ctinfomlemom  12769  setscomd  12844  lgsne0  15486  dceqnconst  15961  dcapnconst  15962  nconstwlpolem  15966
  Copyright terms: Public domain W3C validator