Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctinfom | Unicode version |
Description: A condition for a set being countably infinite. Restates ennnfone 12105 in terms of and function image. Like ennnfone 12105 the condition can be summarized as being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.) |
Ref | Expression |
---|---|
ctinfom | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfone 12105 | . . . 4 DECID | |
2 | 1 | simplbi 272 | . . 3 DECID |
3 | nnenom 10311 | . . . . . . 7 | |
4 | entr 6718 | . . . . . . 7 | |
5 | 3, 4 | mpan2 422 | . . . . . 6 |
6 | 5 | ensymd 6717 | . . . . 5 |
7 | bren 6681 | . . . . 5 | |
8 | 6, 7 | sylib 121 | . . . 4 |
9 | f1ofo 5414 | . . . . . . . 8 | |
10 | 9 | adantl 275 | . . . . . . 7 |
11 | simpr 109 | . . . . . . . . 9 | |
12 | nnord 4565 | . . . . . . . . . . . 12 | |
13 | 12 | adantl 275 | . . . . . . . . . . 11 |
14 | ordirr 4495 | . . . . . . . . . . 11 | |
15 | 13, 14 | syl 14 | . . . . . . . . . 10 |
16 | f1of1 5406 | . . . . . . . . . . . 12 | |
17 | 16 | ad2antlr 481 | . . . . . . . . . . 11 |
18 | omelon 4562 | . . . . . . . . . . . . 13 | |
19 | 18 | onelssi 4384 | . . . . . . . . . . . 12 |
20 | 19 | adantl 275 | . . . . . . . . . . 11 |
21 | f1elima 5714 | . . . . . . . . . . 11 | |
22 | 17, 11, 20, 21 | syl3anc 1217 | . . . . . . . . . 10 |
23 | 15, 22 | mtbird 663 | . . . . . . . . 9 |
24 | fveq2 5461 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2223 | . . . . . . . . . . 11 |
26 | 25 | notbid 657 | . . . . . . . . . 10 |
27 | 26 | rspcev 2813 | . . . . . . . . 9 |
28 | 11, 23, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 28 | ralrimiva 2527 | . . . . . . 7 |
30 | 10, 29 | jca 304 | . . . . . 6 |
31 | 30 | ex 114 | . . . . 5 |
32 | 31 | eximdv 1857 | . . . 4 |
33 | 8, 32 | mpd 13 | . . 3 |
34 | 2, 33 | jca 304 | . 2 DECID |
35 | oveq1 5821 | . . . . . . . . 9 | |
36 | 35 | cbvmptv 4056 | . . . . . . . 8 |
37 | freceq1 6329 | . . . . . . . 8 frec frec | |
38 | 36, 37 | ax-mp 5 | . . . . . . 7 frec frec |
39 | eqid 2154 | . . . . . . 7 frec frec | |
40 | simpl 108 | . . . . . . 7 | |
41 | fveq2 5461 | . . . . . . . . . . . . 13 | |
42 | 41 | eleq1d 2223 | . . . . . . . . . . . 12 |
43 | 42 | notbid 657 | . . . . . . . . . . 11 |
44 | 43 | cbvrexv 2678 | . . . . . . . . . 10 |
45 | 44 | ralbii 2460 | . . . . . . . . 9 |
46 | imaeq2 4917 | . . . . . . . . . . . . 13 | |
47 | 46 | eleq2d 2224 | . . . . . . . . . . . 12 |
48 | 47 | notbid 657 | . . . . . . . . . . 11 |
49 | 48 | rexbidv 2455 | . . . . . . . . . 10 |
50 | 49 | cbvralv 2677 | . . . . . . . . 9 |
51 | 45, 50 | sylbb 122 | . . . . . . . 8 |
52 | 51 | adantl 275 | . . . . . . 7 |
53 | 38, 39, 40, 52 | ctinfomlemom 12107 | . . . . . 6 frec frec frec |
54 | vex 2712 | . . . . . . . 8 | |
55 | frecex 6331 | . . . . . . . . 9 frec | |
56 | 55 | cnvex 5117 | . . . . . . . 8 frec |
57 | 54, 56 | coex 5124 | . . . . . . 7 frec |
58 | foeq1 5381 | . . . . . . . 8 frec frec | |
59 | fveq1 5460 | . . . . . . . . . . . 12 frec frec | |
60 | fveq1 5460 | . . . . . . . . . . . 12 frec frec | |
61 | 59, 60 | neeq12d 2344 | . . . . . . . . . . 11 frec frec frec |
62 | 61 | ralbidv 2454 | . . . . . . . . . 10 frec frec frec |
63 | 62 | rexbidv 2455 | . . . . . . . . 9 frec frec frec |
64 | 63 | ralbidv 2454 | . . . . . . . 8 frec frec frec |
65 | 58, 64 | anbi12d 465 | . . . . . . 7 frec frec frec frec |
66 | 57, 65 | spcev 2804 | . . . . . 6 frec frec frec |
67 | 53, 66 | syl 14 | . . . . 5 |
68 | 67 | exlimiv 1575 | . . . 4 |
69 | 68 | anim2i 340 | . . 3 DECID DECID |
70 | 69, 1 | sylibr 133 | . 2 DECID |
71 | 34, 70 | impbii 125 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 DECID wdc 820 wceq 1332 wex 1469 wcel 2125 wne 2324 wral 2432 wrex 2433 wss 3098 class class class wbr 3961 cmpt 4021 word 4317 com 4543 ccnv 4578 cima 4582 ccom 4583 wf1 5160 wfo 5161 wf1o 5162 cfv 5163 (class class class)co 5814 freccfrec 6327 cen 6672 cc0 7711 c1 7712 caddc 7714 cn 8812 cn0 9069 cz 9146 cfz 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-er 6469 df-pm 6585 df-en 6675 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-fz 9891 df-seqfrec 10323 |
This theorem is referenced by: ctinf 12110 |
Copyright terms: Public domain | W3C validator |