ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfom Unicode version

Theorem ctinfom 11786
Description: A condition for a set being countably infinite. Restates ennnfone 11783 in terms of  om and function image. Like ennnfone 11783 the condition can be summarized as  A being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinfom  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
Distinct variable groups:    A, f, n   
x, A, y    f,
k, n
Allowed substitution hint:    A( k)

Proof of Theorem ctinfom
Dummy variables  a  d  i  m  g  b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfone 11783 . . . 4  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )
) ) )
21simplbi 270 . . 3  |-  ( A 
~~  NN  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
3 nnenom 10100 . . . . . . 7  |-  NN  ~~  om
4 entr 6632 . . . . . . 7  |-  ( ( A  ~~  NN  /\  NN  ~~  om )  ->  A  ~~  om )
53, 4mpan2 419 . . . . . 6  |-  ( A 
~~  NN  ->  A  ~~  om )
65ensymd 6631 . . . . 5  |-  ( A 
~~  NN  ->  om  ~~  A )
7 bren 6595 . . . . 5  |-  ( om 
~~  A  <->  E. f 
f : om -1-1-onto-> A )
86, 7sylib 121 . . . 4  |-  ( A 
~~  NN  ->  E. f 
f : om -1-1-onto-> A )
9 f1ofo 5330 . . . . . . . 8  |-  ( f : om -1-1-onto-> A  ->  f : om -onto-> A )
109adantl 273 . . . . . . 7  |-  ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  ->  f : om -onto-> A )
11 simpr 109 . . . . . . . . 9  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  n  e.  om )
12 nnord 4485 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  Ord  n )
1312adantl 273 . . . . . . . . . . 11  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  Ord  n )
14 ordirr 4417 . . . . . . . . . . 11  |-  ( Ord  n  ->  -.  n  e.  n )
1513, 14syl 14 . . . . . . . . . 10  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  -.  n  e.  n )
16 f1of1 5322 . . . . . . . . . . . 12  |-  ( f : om -1-1-onto-> A  ->  f : om
-1-1-> A )
1716ad2antlr 478 . . . . . . . . . . 11  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  f : om -1-1-> A )
18 omelon 4482 . . . . . . . . . . . . 13  |-  om  e.  On
1918onelssi 4311 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  n  C_ 
om )
2019adantl 273 . . . . . . . . . . 11  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  n  C_ 
om )
21 f1elima 5628 . . . . . . . . . . 11  |-  ( ( f : om -1-1-> A  /\  n  e.  om  /\  n  C_  om )  ->  ( ( f `  n )  e.  ( f " n )  <-> 
n  e.  n ) )
2217, 11, 20, 21syl3anc 1199 . . . . . . . . . 10  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  (
( f `  n
)  e.  ( f
" n )  <->  n  e.  n ) )
2315, 22mtbird 645 . . . . . . . . 9  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  -.  ( f `  n
)  e.  ( f
" n ) )
24 fveq2 5375 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
f `  k )  =  ( f `  n ) )
2524eleq1d 2183 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( f `  k
)  e.  ( f
" n )  <->  ( f `  n )  e.  ( f " n ) ) )
2625notbid 639 . . . . . . . . . 10  |-  ( k  =  n  ->  ( -.  ( f `  k
)  e.  ( f
" n )  <->  -.  (
f `  n )  e.  ( f " n
) ) )
2726rspcev 2760 . . . . . . . . 9  |-  ( ( n  e.  om  /\  -.  ( f `  n
)  e.  ( f
" n ) )  ->  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )
2811, 23, 27syl2anc 406 . . . . . . . 8  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
) )
2928ralrimiva 2479 . . . . . . 7  |-  ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  ->  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) )
3010, 29jca 302 . . . . . 6  |-  ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  ->  (
f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )
3130ex 114 . . . . 5  |-  ( A 
~~  NN  ->  ( f : om -1-1-onto-> A  ->  ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) ) ) )
3231eximdv 1834 . . . 4  |-  ( A 
~~  NN  ->  ( E. f  f : om -1-1-onto-> A  ->  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
338, 32mpd 13 . . 3  |-  ( A 
~~  NN  ->  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )
342, 33jca 302 . 2  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) ) )
35 oveq1 5735 . . . . . . . . 9  |-  ( b  =  a  ->  (
b  +  1 )  =  ( a  +  1 ) )
3635cbvmptv 3984 . . . . . . . 8  |-  ( b  e.  ZZ  |->  ( b  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )
37 freceq1 6243 . . . . . . . 8  |-  ( ( b  e.  ZZ  |->  ( b  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )  -> frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 ) )
3836, 37ax-mp 7 . . . . . . 7  |- frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )
39 eqid 2115 . . . . . . 7  |-  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )
40 simpl 108 . . . . . . 7  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  f : om -onto-> A )
41 fveq2 5375 . . . . . . . . . . . . 13  |-  ( k  =  d  ->  (
f `  k )  =  ( f `  d ) )
4241eleq1d 2183 . . . . . . . . . . . 12  |-  ( k  =  d  ->  (
( f `  k
)  e.  ( f
" n )  <->  ( f `  d )  e.  ( f " n ) ) )
4342notbid 639 . . . . . . . . . . 11  |-  ( k  =  d  ->  ( -.  ( f `  k
)  e.  ( f
" n )  <->  -.  (
f `  d )  e.  ( f " n
) ) )
4443cbvrexv 2629 . . . . . . . . . 10  |-  ( E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n )  <->  E. d  e.  om  -.  ( f `
 d )  e.  ( f " n
) )
4544ralbii 2415 . . . . . . . . 9  |-  ( A. n  e.  om  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
)  <->  A. n  e.  om  E. d  e.  om  -.  ( f `  d
)  e.  ( f
" n ) )
46 imaeq2 4835 . . . . . . . . . . . . 13  |-  ( n  =  c  ->  (
f " n )  =  ( f "
c ) )
4746eleq2d 2184 . . . . . . . . . . . 12  |-  ( n  =  c  ->  (
( f `  d
)  e.  ( f
" n )  <->  ( f `  d )  e.  ( f " c ) ) )
4847notbid 639 . . . . . . . . . . 11  |-  ( n  =  c  ->  ( -.  ( f `  d
)  e.  ( f
" n )  <->  -.  (
f `  d )  e.  ( f " c
) ) )
4948rexbidv 2412 . . . . . . . . . 10  |-  ( n  =  c  ->  ( E. d  e.  om  -.  ( f `  d
)  e.  ( f
" n )  <->  E. d  e.  om  -.  ( f `
 d )  e.  ( f " c
) ) )
5049cbvralv 2628 . . . . . . . . 9  |-  ( A. n  e.  om  E. d  e.  om  -.  ( f `
 d )  e.  ( f " n
)  <->  A. c  e.  om  E. d  e.  om  -.  ( f `  d
)  e.  ( f
" c ) )
5145, 50sylbb 122 . . . . . . . 8  |-  ( A. n  e.  om  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
)  ->  A. c  e.  om  E. d  e. 
om  -.  ( f `  d )  e.  ( f " c ) )
5251adantl 273 . . . . . . 7  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  A. c  e.  om  E. d  e.  om  -.  ( f `  d
)  e.  ( f
" c ) )
5338, 39, 40, 52ctinfomlemom 11785 . . . . . 6  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
54 vex 2660 . . . . . . . 8  |-  f  e. 
_V
55 frecex 6245 . . . . . . . . 9  |- frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  e.  _V
5655cnvex 5035 . . . . . . . 8  |-  `'frec (
( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  e.  _V
5754, 56coex 5042 . . . . . . 7  |-  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  e.  _V
58 foeq1 5299 . . . . . . . 8  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( g : NN0 -onto-> A  <-> 
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A ) )
59 fveq1 5374 . . . . . . . . . . . 12  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( g `  j
)  =  ( ( f  o.  `'frec (
( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j
) )
60 fveq1 5374 . . . . . . . . . . . 12  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( g `  i
)  =  ( ( f  o.  `'frec (
( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i
) )
6159, 60neeq12d 2302 . . . . . . . . . . 11  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( ( g `  j )  =/=  (
g `  i )  <->  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6261ralbidv 2411 . . . . . . . . . 10  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )  <->  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6362rexbidv 2412 . . . . . . . . 9  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( g `  j
)  =/=  ( g `
 i )  <->  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6463ralbidv 2411 . . . . . . . 8  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( g `  j )  =/=  ( g `  i )  <->  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6558, 64anbi12d 462 . . . . . . 7  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( g `  j
)  =/=  ( g `
 i ) )  <-> 
( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) ) )
6657, 65spcev 2751 . . . . . 6  |-  ( ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) )  ->  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( g `  j
)  =/=  ( g `
 i ) ) )
6753, 66syl 14 . . . . 5  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )
) )
6867exlimiv 1560 . . . 4  |-  ( E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) )  ->  E. g
( g : NN0 -onto-> A  /\  A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( g `  j )  =/=  ( g `  i ) ) )
6968anim2i 337 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )
) ) )
7069, 1sylibr 133 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )  ->  A  ~~  NN )
7134, 70impbii 125 1  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104  DECID wdc 802    = wceq 1314   E.wex 1451    e. wcel 1463    =/= wne 2282   A.wral 2390   E.wrex 2391    C_ wss 3037   class class class wbr 3895    |-> cmpt 3949   Ord word 4244   omcom 4464   `'ccnv 4498   "cima 4502    o. ccom 4503   -1-1->wf1 5078   -onto->wfo 5079   -1-1-onto->wf1o 5080   ` cfv 5081  (class class class)co 5728  freccfrec 6241    ~~ cen 6586   0cc0 7547   1c1 7548    + caddc 7550   NNcn 8630   NN0cn0 8881   ZZcz 8958   ...cfz 9683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-er 6383  df-pm 6499  df-en 6589  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684  df-seqfrec 10112
This theorem is referenced by:  ctinf  11788
  Copyright terms: Public domain W3C validator