ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfom Unicode version

Theorem ctinfom 11941
Description: A condition for a set being countably infinite. Restates ennnfone 11938 in terms of  om and function image. Like ennnfone 11938 the condition can be summarized as  A being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinfom  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
Distinct variable groups:    A, f, n   
x, A, y    f,
k, n
Allowed substitution hint:    A( k)

Proof of Theorem ctinfom
Dummy variables  a  d  i  m  g  b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfone 11938 . . . 4  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )
) ) )
21simplbi 272 . . 3  |-  ( A 
~~  NN  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
3 nnenom 10207 . . . . . . 7  |-  NN  ~~  om
4 entr 6678 . . . . . . 7  |-  ( ( A  ~~  NN  /\  NN  ~~  om )  ->  A  ~~  om )
53, 4mpan2 421 . . . . . 6  |-  ( A 
~~  NN  ->  A  ~~  om )
65ensymd 6677 . . . . 5  |-  ( A 
~~  NN  ->  om  ~~  A )
7 bren 6641 . . . . 5  |-  ( om 
~~  A  <->  E. f 
f : om -1-1-onto-> A )
86, 7sylib 121 . . . 4  |-  ( A 
~~  NN  ->  E. f 
f : om -1-1-onto-> A )
9 f1ofo 5374 . . . . . . . 8  |-  ( f : om -1-1-onto-> A  ->  f : om -onto-> A )
109adantl 275 . . . . . . 7  |-  ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  ->  f : om -onto-> A )
11 simpr 109 . . . . . . . . 9  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  n  e.  om )
12 nnord 4525 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  Ord  n )
1312adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  Ord  n )
14 ordirr 4457 . . . . . . . . . . 11  |-  ( Ord  n  ->  -.  n  e.  n )
1513, 14syl 14 . . . . . . . . . 10  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  -.  n  e.  n )
16 f1of1 5366 . . . . . . . . . . . 12  |-  ( f : om -1-1-onto-> A  ->  f : om
-1-1-> A )
1716ad2antlr 480 . . . . . . . . . . 11  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  f : om -1-1-> A )
18 omelon 4522 . . . . . . . . . . . . 13  |-  om  e.  On
1918onelssi 4351 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  n  C_ 
om )
2019adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  n  C_ 
om )
21 f1elima 5674 . . . . . . . . . . 11  |-  ( ( f : om -1-1-> A  /\  n  e.  om  /\  n  C_  om )  ->  ( ( f `  n )  e.  ( f " n )  <-> 
n  e.  n ) )
2217, 11, 20, 21syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  (
( f `  n
)  e.  ( f
" n )  <->  n  e.  n ) )
2315, 22mtbird 662 . . . . . . . . 9  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  -.  ( f `  n
)  e.  ( f
" n ) )
24 fveq2 5421 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
f `  k )  =  ( f `  n ) )
2524eleq1d 2208 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( f `  k
)  e.  ( f
" n )  <->  ( f `  n )  e.  ( f " n ) ) )
2625notbid 656 . . . . . . . . . 10  |-  ( k  =  n  ->  ( -.  ( f `  k
)  e.  ( f
" n )  <->  -.  (
f `  n )  e.  ( f " n
) ) )
2726rspcev 2789 . . . . . . . . 9  |-  ( ( n  e.  om  /\  -.  ( f `  n
)  e.  ( f
" n ) )  ->  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )
2811, 23, 27syl2anc 408 . . . . . . . 8  |-  ( ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  /\  n  e.  om )  ->  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
) )
2928ralrimiva 2505 . . . . . . 7  |-  ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  ->  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) )
3010, 29jca 304 . . . . . 6  |-  ( ( A  ~~  NN  /\  f : om -1-1-onto-> A )  ->  (
f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )
3130ex 114 . . . . 5  |-  ( A 
~~  NN  ->  ( f : om -1-1-onto-> A  ->  ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) ) ) )
3231eximdv 1852 . . . 4  |-  ( A 
~~  NN  ->  ( E. f  f : om -1-1-onto-> A  ->  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
338, 32mpd 13 . . 3  |-  ( A 
~~  NN  ->  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )
342, 33jca 304 . 2  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) ) )
35 oveq1 5781 . . . . . . . . 9  |-  ( b  =  a  ->  (
b  +  1 )  =  ( a  +  1 ) )
3635cbvmptv 4024 . . . . . . . 8  |-  ( b  e.  ZZ  |->  ( b  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )
37 freceq1 6289 . . . . . . . 8  |-  ( ( b  e.  ZZ  |->  ( b  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )  -> frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 ) )
3836, 37ax-mp 5 . . . . . . 7  |- frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )
39 eqid 2139 . . . . . . 7  |-  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )
40 simpl 108 . . . . . . 7  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  f : om -onto-> A )
41 fveq2 5421 . . . . . . . . . . . . 13  |-  ( k  =  d  ->  (
f `  k )  =  ( f `  d ) )
4241eleq1d 2208 . . . . . . . . . . . 12  |-  ( k  =  d  ->  (
( f `  k
)  e.  ( f
" n )  <->  ( f `  d )  e.  ( f " n ) ) )
4342notbid 656 . . . . . . . . . . 11  |-  ( k  =  d  ->  ( -.  ( f `  k
)  e.  ( f
" n )  <->  -.  (
f `  d )  e.  ( f " n
) ) )
4443cbvrexv 2655 . . . . . . . . . 10  |-  ( E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n )  <->  E. d  e.  om  -.  ( f `
 d )  e.  ( f " n
) )
4544ralbii 2441 . . . . . . . . 9  |-  ( A. n  e.  om  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
)  <->  A. n  e.  om  E. d  e.  om  -.  ( f `  d
)  e.  ( f
" n ) )
46 imaeq2 4877 . . . . . . . . . . . . 13  |-  ( n  =  c  ->  (
f " n )  =  ( f "
c ) )
4746eleq2d 2209 . . . . . . . . . . . 12  |-  ( n  =  c  ->  (
( f `  d
)  e.  ( f
" n )  <->  ( f `  d )  e.  ( f " c ) ) )
4847notbid 656 . . . . . . . . . . 11  |-  ( n  =  c  ->  ( -.  ( f `  d
)  e.  ( f
" n )  <->  -.  (
f `  d )  e.  ( f " c
) ) )
4948rexbidv 2438 . . . . . . . . . 10  |-  ( n  =  c  ->  ( E. d  e.  om  -.  ( f `  d
)  e.  ( f
" n )  <->  E. d  e.  om  -.  ( f `
 d )  e.  ( f " c
) ) )
5049cbvralv 2654 . . . . . . . . 9  |-  ( A. n  e.  om  E. d  e.  om  -.  ( f `
 d )  e.  ( f " n
)  <->  A. c  e.  om  E. d  e.  om  -.  ( f `  d
)  e.  ( f
" c ) )
5145, 50sylbb 122 . . . . . . . 8  |-  ( A. n  e.  om  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
)  ->  A. c  e.  om  E. d  e. 
om  -.  ( f `  d )  e.  ( f " c ) )
5251adantl 275 . . . . . . 7  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  A. c  e.  om  E. d  e.  om  -.  ( f `  d
)  e.  ( f
" c ) )
5338, 39, 40, 52ctinfomlemom 11940 . . . . . 6  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
54 vex 2689 . . . . . . . 8  |-  f  e. 
_V
55 frecex 6291 . . . . . . . . 9  |- frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  e.  _V
5655cnvex 5077 . . . . . . . 8  |-  `'frec (
( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 )  e.  _V
5754, 56coex 5084 . . . . . . 7  |-  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  e.  _V
58 foeq1 5341 . . . . . . . 8  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( g : NN0 -onto-> A  <-> 
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A ) )
59 fveq1 5420 . . . . . . . . . . . 12  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( g `  j
)  =  ( ( f  o.  `'frec (
( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j
) )
60 fveq1 5420 . . . . . . . . . . . 12  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( g `  i
)  =  ( ( f  o.  `'frec (
( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i
) )
6159, 60neeq12d 2328 . . . . . . . . . . 11  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( ( g `  j )  =/=  (
g `  i )  <->  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6261ralbidv 2437 . . . . . . . . . 10  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )  <->  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6362rexbidv 2438 . . . . . . . . 9  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( g `  j
)  =/=  ( g `
 i )  <->  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6463ralbidv 2437 . . . . . . . 8  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( g `  j )  =/=  ( g `  i )  <->  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) )
6558, 64anbi12d 464 . . . . . . 7  |-  ( g  =  ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) )  -> 
( ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( g `  j
)  =/=  ( g `
 i ) )  <-> 
( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) ) ) )
6657, 65spcev 2780 . . . . . 6  |-  ( ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( ( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  j )  =/=  (
( f  o.  `'frec ( ( b  e.  ZZ  |->  ( b  +  1 ) ) ,  0 ) ) `  i ) )  ->  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e. 
NN0  A. i  e.  ( 0 ... m ) ( g `  j
)  =/=  ( g `
 i ) ) )
6753, 66syl 14 . . . . 5  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )
) )
6867exlimiv 1577 . . . 4  |-  ( E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) )  ->  E. g
( g : NN0 -onto-> A  /\  A. m  e. 
NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m ) ( g `  j )  =/=  ( g `  i ) ) )
6968anim2i 339 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. g ( g : NN0 -onto-> A  /\  A. m  e.  NN0  E. j  e.  NN0  A. i  e.  ( 0 ... m
) ( g `  j )  =/=  (
g `  i )
) ) )
7069, 1sylibr 133 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )  ->  A  ~~  NN )
7134, 70impbii 125 1  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104  DECID wdc 819    = wceq 1331   E.wex 1468    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   Ord word 4284   omcom 4504   `'ccnv 4538   "cima 4542    o. ccom 4543   -1-1->wf1 5120   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774  freccfrec 6287    ~~ cen 6632   0cc0 7620   1c1 7621    + caddc 7623   NNcn 8720   NN0cn0 8977   ZZcz 9054   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-er 6429  df-pm 6545  df-en 6635  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219
This theorem is referenced by:  ctinf  11943
  Copyright terms: Public domain W3C validator