Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctinfom | Unicode version |
Description: A condition for a set being countably infinite. Restates ennnfone 12380 in terms of and function image. Like ennnfone 12380 the condition can be summarized as being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.) |
Ref | Expression |
---|---|
ctinfom | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfone 12380 | . . . 4 DECID | |
2 | 1 | simplbi 272 | . . 3 DECID |
3 | nnenom 10390 | . . . . . . 7 | |
4 | entr 6762 | . . . . . . 7 | |
5 | 3, 4 | mpan2 423 | . . . . . 6 |
6 | 5 | ensymd 6761 | . . . . 5 |
7 | bren 6725 | . . . . 5 | |
8 | 6, 7 | sylib 121 | . . . 4 |
9 | f1ofo 5449 | . . . . . . . 8 | |
10 | 9 | adantl 275 | . . . . . . 7 |
11 | simpr 109 | . . . . . . . . 9 | |
12 | nnord 4596 | . . . . . . . . . . . 12 | |
13 | 12 | adantl 275 | . . . . . . . . . . 11 |
14 | ordirr 4526 | . . . . . . . . . . 11 | |
15 | 13, 14 | syl 14 | . . . . . . . . . 10 |
16 | f1of1 5441 | . . . . . . . . . . . 12 | |
17 | 16 | ad2antlr 486 | . . . . . . . . . . 11 |
18 | omelon 4593 | . . . . . . . . . . . . 13 | |
19 | 18 | onelssi 4414 | . . . . . . . . . . . 12 |
20 | 19 | adantl 275 | . . . . . . . . . . 11 |
21 | f1elima 5752 | . . . . . . . . . . 11 | |
22 | 17, 11, 20, 21 | syl3anc 1233 | . . . . . . . . . 10 |
23 | 15, 22 | mtbird 668 | . . . . . . . . 9 |
24 | fveq2 5496 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2239 | . . . . . . . . . . 11 |
26 | 25 | notbid 662 | . . . . . . . . . 10 |
27 | 26 | rspcev 2834 | . . . . . . . . 9 |
28 | 11, 23, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 28 | ralrimiva 2543 | . . . . . . 7 |
30 | 10, 29 | jca 304 | . . . . . 6 |
31 | 30 | ex 114 | . . . . 5 |
32 | 31 | eximdv 1873 | . . . 4 |
33 | 8, 32 | mpd 13 | . . 3 |
34 | 2, 33 | jca 304 | . 2 DECID |
35 | oveq1 5860 | . . . . . . . . 9 | |
36 | 35 | cbvmptv 4085 | . . . . . . . 8 |
37 | freceq1 6371 | . . . . . . . 8 frec frec | |
38 | 36, 37 | ax-mp 5 | . . . . . . 7 frec frec |
39 | eqid 2170 | . . . . . . 7 frec frec | |
40 | simpl 108 | . . . . . . 7 | |
41 | fveq2 5496 | . . . . . . . . . . . . 13 | |
42 | 41 | eleq1d 2239 | . . . . . . . . . . . 12 |
43 | 42 | notbid 662 | . . . . . . . . . . 11 |
44 | 43 | cbvrexv 2697 | . . . . . . . . . 10 |
45 | 44 | ralbii 2476 | . . . . . . . . 9 |
46 | imaeq2 4949 | . . . . . . . . . . . . 13 | |
47 | 46 | eleq2d 2240 | . . . . . . . . . . . 12 |
48 | 47 | notbid 662 | . . . . . . . . . . 11 |
49 | 48 | rexbidv 2471 | . . . . . . . . . 10 |
50 | 49 | cbvralv 2696 | . . . . . . . . 9 |
51 | 45, 50 | sylbb 122 | . . . . . . . 8 |
52 | 51 | adantl 275 | . . . . . . 7 |
53 | 38, 39, 40, 52 | ctinfomlemom 12382 | . . . . . 6 frec frec frec |
54 | vex 2733 | . . . . . . . 8 | |
55 | frecex 6373 | . . . . . . . . 9 frec | |
56 | 55 | cnvex 5149 | . . . . . . . 8 frec |
57 | 54, 56 | coex 5156 | . . . . . . 7 frec |
58 | foeq1 5416 | . . . . . . . 8 frec frec | |
59 | fveq1 5495 | . . . . . . . . . . . 12 frec frec | |
60 | fveq1 5495 | . . . . . . . . . . . 12 frec frec | |
61 | 59, 60 | neeq12d 2360 | . . . . . . . . . . 11 frec frec frec |
62 | 61 | ralbidv 2470 | . . . . . . . . . 10 frec frec frec |
63 | 62 | rexbidv 2471 | . . . . . . . . 9 frec frec frec |
64 | 63 | ralbidv 2470 | . . . . . . . 8 frec frec frec |
65 | 58, 64 | anbi12d 470 | . . . . . . 7 frec frec frec frec |
66 | 57, 65 | spcev 2825 | . . . . . 6 frec frec frec |
67 | 53, 66 | syl 14 | . . . . 5 |
68 | 67 | exlimiv 1591 | . . . 4 |
69 | 68 | anim2i 340 | . . 3 DECID DECID |
70 | 69, 1 | sylibr 133 | . 2 DECID |
71 | 34, 70 | impbii 125 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wne 2340 wral 2448 wrex 2449 wss 3121 class class class wbr 3989 cmpt 4050 word 4347 com 4574 ccnv 4610 cima 4614 ccom 4615 wf1 5195 wfo 5196 wf1o 5197 cfv 5198 (class class class)co 5853 freccfrec 6369 cen 6716 cc0 7774 c1 7775 caddc 7777 cn 8878 cn0 9135 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-er 6513 df-pm 6629 df-en 6719 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-seqfrec 10402 |
This theorem is referenced by: ctinf 12385 |
Copyright terms: Public domain | W3C validator |