Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctinfom | Unicode version |
Description: A condition for a set being countably infinite. Restates ennnfone 12358 in terms of and function image. Like ennnfone 12358 the condition can be summarized as being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.) |
Ref | Expression |
---|---|
ctinfom | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfone 12358 | . . . 4 DECID | |
2 | 1 | simplbi 272 | . . 3 DECID |
3 | nnenom 10369 | . . . . . . 7 | |
4 | entr 6750 | . . . . . . 7 | |
5 | 3, 4 | mpan2 422 | . . . . . 6 |
6 | 5 | ensymd 6749 | . . . . 5 |
7 | bren 6713 | . . . . 5 | |
8 | 6, 7 | sylib 121 | . . . 4 |
9 | f1ofo 5439 | . . . . . . . 8 | |
10 | 9 | adantl 275 | . . . . . . 7 |
11 | simpr 109 | . . . . . . . . 9 | |
12 | nnord 4589 | . . . . . . . . . . . 12 | |
13 | 12 | adantl 275 | . . . . . . . . . . 11 |
14 | ordirr 4519 | . . . . . . . . . . 11 | |
15 | 13, 14 | syl 14 | . . . . . . . . . 10 |
16 | f1of1 5431 | . . . . . . . . . . . 12 | |
17 | 16 | ad2antlr 481 | . . . . . . . . . . 11 |
18 | omelon 4586 | . . . . . . . . . . . . 13 | |
19 | 18 | onelssi 4407 | . . . . . . . . . . . 12 |
20 | 19 | adantl 275 | . . . . . . . . . . 11 |
21 | f1elima 5741 | . . . . . . . . . . 11 | |
22 | 17, 11, 20, 21 | syl3anc 1228 | . . . . . . . . . 10 |
23 | 15, 22 | mtbird 663 | . . . . . . . . 9 |
24 | fveq2 5486 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2235 | . . . . . . . . . . 11 |
26 | 25 | notbid 657 | . . . . . . . . . 10 |
27 | 26 | rspcev 2830 | . . . . . . . . 9 |
28 | 11, 23, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 28 | ralrimiva 2539 | . . . . . . 7 |
30 | 10, 29 | jca 304 | . . . . . 6 |
31 | 30 | ex 114 | . . . . 5 |
32 | 31 | eximdv 1868 | . . . 4 |
33 | 8, 32 | mpd 13 | . . 3 |
34 | 2, 33 | jca 304 | . 2 DECID |
35 | oveq1 5849 | . . . . . . . . 9 | |
36 | 35 | cbvmptv 4078 | . . . . . . . 8 |
37 | freceq1 6360 | . . . . . . . 8 frec frec | |
38 | 36, 37 | ax-mp 5 | . . . . . . 7 frec frec |
39 | eqid 2165 | . . . . . . 7 frec frec | |
40 | simpl 108 | . . . . . . 7 | |
41 | fveq2 5486 | . . . . . . . . . . . . 13 | |
42 | 41 | eleq1d 2235 | . . . . . . . . . . . 12 |
43 | 42 | notbid 657 | . . . . . . . . . . 11 |
44 | 43 | cbvrexv 2693 | . . . . . . . . . 10 |
45 | 44 | ralbii 2472 | . . . . . . . . 9 |
46 | imaeq2 4942 | . . . . . . . . . . . . 13 | |
47 | 46 | eleq2d 2236 | . . . . . . . . . . . 12 |
48 | 47 | notbid 657 | . . . . . . . . . . 11 |
49 | 48 | rexbidv 2467 | . . . . . . . . . 10 |
50 | 49 | cbvralv 2692 | . . . . . . . . 9 |
51 | 45, 50 | sylbb 122 | . . . . . . . 8 |
52 | 51 | adantl 275 | . . . . . . 7 |
53 | 38, 39, 40, 52 | ctinfomlemom 12360 | . . . . . 6 frec frec frec |
54 | vex 2729 | . . . . . . . 8 | |
55 | frecex 6362 | . . . . . . . . 9 frec | |
56 | 55 | cnvex 5142 | . . . . . . . 8 frec |
57 | 54, 56 | coex 5149 | . . . . . . 7 frec |
58 | foeq1 5406 | . . . . . . . 8 frec frec | |
59 | fveq1 5485 | . . . . . . . . . . . 12 frec frec | |
60 | fveq1 5485 | . . . . . . . . . . . 12 frec frec | |
61 | 59, 60 | neeq12d 2356 | . . . . . . . . . . 11 frec frec frec |
62 | 61 | ralbidv 2466 | . . . . . . . . . 10 frec frec frec |
63 | 62 | rexbidv 2467 | . . . . . . . . 9 frec frec frec |
64 | 63 | ralbidv 2466 | . . . . . . . 8 frec frec frec |
65 | 58, 64 | anbi12d 465 | . . . . . . 7 frec frec frec frec |
66 | 57, 65 | spcev 2821 | . . . . . 6 frec frec frec |
67 | 53, 66 | syl 14 | . . . . 5 |
68 | 67 | exlimiv 1586 | . . . 4 |
69 | 68 | anim2i 340 | . . 3 DECID DECID |
70 | 69, 1 | sylibr 133 | . 2 DECID |
71 | 34, 70 | impbii 125 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 DECID wdc 824 wceq 1343 wex 1480 wcel 2136 wne 2336 wral 2444 wrex 2445 wss 3116 class class class wbr 3982 cmpt 4043 word 4340 com 4567 ccnv 4603 cima 4607 ccom 4608 wf1 5185 wfo 5186 wf1o 5187 cfv 5188 (class class class)co 5842 freccfrec 6358 cen 6704 cc0 7753 c1 7754 caddc 7756 cn 8857 cn0 9114 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-er 6501 df-pm 6617 df-en 6707 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-seqfrec 10381 |
This theorem is referenced by: ctinf 12363 |
Copyright terms: Public domain | W3C validator |