ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2d Unicode version

Theorem neeq2d 2359
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
neeq2d  |-  ( ph  ->  ( C  =/=  A  <->  C  =/=  B ) )

Proof of Theorem neeq2d
StepHypRef Expression
1 neeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 neeq2 2354 . 2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  =/=  A  <->  C  =/=  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by:  neeq12d  2360  neeqtrd  2368  sqrt2irr  12116  ennnfonelemk  12355  ennnfoneleminc  12366  ennnfonelemex  12369  ennnfonelemnn0  12377  ennnfonelemr  12378
  Copyright terms: Public domain W3C validator