ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2d Unicode version

Theorem neeq2d 2419
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
neeq2d  |-  ( ph  ->  ( C  =/=  A  <->  C  =/=  B ) )

Proof of Theorem neeq2d
StepHypRef Expression
1 neeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 neeq2 2414 . 2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  =/=  A  <->  C  =/=  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    =/= wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-ne 2401
This theorem is referenced by:  neeq12d  2420  neeqtrd  2428  sqrt2irr  12679  ennnfonelemk  12966  ennnfoneleminc  12977  ennnfonelemex  12980  ennnfonelemnn0  12988  ennnfonelemr  12989  setscomd  13068
  Copyright terms: Public domain W3C validator