ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nel0 Unicode version

Theorem nel0 3331
Description: From the general negation of membership in  A, infer that  A is the empty set. (Contributed by BJ, 6-Oct-2018.)
Hypothesis
Ref Expression
nel0.1  |-  -.  x  e.  A
Assertion
Ref Expression
nel0  |-  A  =  (/)
Distinct variable group:    x, A

Proof of Theorem nel0
StepHypRef Expression
1 eq0 3328 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 nel0.1 . 2  |-  -.  x  e.  A
31, 2mpgbir 1397 1  |-  A  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1299    e. wcel 1448   (/)c0 3310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-dif 3023  df-nul 3311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator