ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nel0 Unicode version

Theorem nel0 3415
Description: From the general negation of membership in  A, infer that  A is the empty set. (Contributed by BJ, 6-Oct-2018.)
Hypothesis
Ref Expression
nel0.1  |-  -.  x  e.  A
Assertion
Ref Expression
nel0  |-  A  =  (/)
Distinct variable group:    x, A

Proof of Theorem nel0
StepHypRef Expression
1 eq0 3412 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 nel0.1 . 2  |-  -.  x  e.  A
31, 2mpgbir 1433 1  |-  A  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1335    e. wcel 2128   (/)c0 3394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-nul 3395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator