ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nel0 Unicode version

Theorem nel0 3513
Description: From the general negation of membership in  A, infer that  A is the empty set. (Contributed by BJ, 6-Oct-2018.)
Hypothesis
Ref Expression
nel0.1  |-  -.  x  e.  A
Assertion
Ref Expression
nel0  |-  A  =  (/)
Distinct variable group:    x, A

Proof of Theorem nel0
StepHypRef Expression
1 eq0 3510 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 nel0.1 . 2  |-  -.  x  e.  A
31, 2mpgbir 1499 1  |-  A  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395    e. wcel 2200   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator