ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpgbir Unicode version

Theorem mpgbir 1467
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbir.1  |-  ( ph  <->  A. x ps )
mpgbir.2  |-  ps
Assertion
Ref Expression
mpgbir  |-  ph

Proof of Theorem mpgbir
StepHypRef Expression
1 mpgbir.2 . . 3  |-  ps
21ax-gen 1463 . 2  |-  A. x ps
3 mpgbir.1 . 2  |-  ( ph  <->  A. x ps )
42, 3mpbir 146 1  |-  ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfi  1476  cvjust  2191  eqriv  2193  abbi2i  2311  nfci  2329  abid2f  2365  rgen  2550  ssriv  3188  ss2abi  3256  nel0  3473  ssmin  3894  intab  3904  iunab  3964  iinab  3979  sndisj  4030  disjxsn  4032  intid  4258  fr0  4387  zfregfr  4611  peano1  4631  relssi  4755  dm0  4881  dmi  4882  funopabeq  5295  isarep2  5346  fvopab3ig  5638  opabex  5789  acexmid  5924  finomni  7215  dfuzi  9453  fzodisj  10271  fzouzdisj  10273  bdelir  15577
  Copyright terms: Public domain W3C validator