ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpgbir Unicode version

Theorem mpgbir 1499
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbir.1  |-  ( ph  <->  A. x ps )
mpgbir.2  |-  ps
Assertion
Ref Expression
mpgbir  |-  ph

Proof of Theorem mpgbir
StepHypRef Expression
1 mpgbir.2 . . 3  |-  ps
21ax-gen 1495 . 2  |-  A. x ps
3 mpgbir.1 . 2  |-  ( ph  <->  A. x ps )
42, 3mpbir 146 1  |-  ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfi  1508  cvjust  2224  eqriv  2226  abbi2i  2344  nfci  2362  abid2f  2398  rgen  2583  ssriv  3228  ss2abi  3296  nel0  3513  ssmin  3942  intab  3952  iunab  4012  iinab  4027  sndisj  4079  disjxsn  4081  intid  4310  fr0  4442  zfregfr  4666  peano1  4686  relssi  4810  dm0  4937  dmi  4938  funopabeq  5354  isarep2  5408  fvopab3ig  5708  opabex  5863  acexmid  6000  finomni  7307  dfuzi  9557  fzodisj  10376  fzouzdisj  10378  fzodisjsn  10380  bdelir  16210
  Copyright terms: Public domain W3C validator