![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpgbir | Unicode version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mpgbir.2 |
![]() ![]() |
Ref | Expression |
---|---|
mpgbir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 |
. . 3
![]() ![]() | |
2 | 1 | ax-gen 1449 |
. 2
![]() ![]() ![]() ![]() |
3 | mpgbir.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbir 146 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nfi 1462 cvjust 2172 eqriv 2174 abbi2i 2292 nfci 2309 abid2f 2345 rgen 2530 ssriv 3161 ss2abi 3229 nel0 3446 ssmin 3865 intab 3875 iunab 3935 iinab 3950 sndisj 4001 disjxsn 4003 intid 4226 fr0 4353 zfregfr 4575 peano1 4595 relssi 4719 dm0 4843 dmi 4844 funopabeq 5254 isarep2 5305 fvopab3ig 5592 opabex 5742 acexmid 5876 finomni 7140 dfuzi 9365 fzodisj 10180 fzouzdisj 10182 bdelir 14638 |
Copyright terms: Public domain | W3C validator |