ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpgbir Unicode version

Theorem mpgbir 1464
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbir.1  |-  ( ph  <->  A. x ps )
mpgbir.2  |-  ps
Assertion
Ref Expression
mpgbir  |-  ph

Proof of Theorem mpgbir
StepHypRef Expression
1 mpgbir.2 . . 3  |-  ps
21ax-gen 1460 . 2  |-  A. x ps
3 mpgbir.1 . 2  |-  ( ph  <->  A. x ps )
42, 3mpbir 146 1  |-  ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfi  1473  cvjust  2188  eqriv  2190  abbi2i  2308  nfci  2326  abid2f  2362  rgen  2547  ssriv  3183  ss2abi  3251  nel0  3468  ssmin  3889  intab  3899  iunab  3959  iinab  3974  sndisj  4025  disjxsn  4027  intid  4253  fr0  4382  zfregfr  4606  peano1  4626  relssi  4750  dm0  4876  dmi  4877  funopabeq  5290  isarep2  5341  fvopab3ig  5631  opabex  5782  acexmid  5917  finomni  7199  dfuzi  9427  fzodisj  10245  fzouzdisj  10247  bdelir  15339
  Copyright terms: Public domain W3C validator