ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 Unicode version

Theorem notm0 3429
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Distinct variable group:    x, A

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3427 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 alnex 1487 . 2  |-  ( A. x  -.  x  e.  A  <->  -. 
E. x  x  e.  A )
31, 2bitr2i 184 1  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by:  disjnim  3973  pwntru  4178  exmidn0m  4180  mapprc  6618  map0g  6654  ixpprc  6685  ixp0  6697  exmidfodomrlemim  7157  ntreq0  12772  blssioo  13185  pwtrufal  13877
  Copyright terms: Public domain W3C validator