ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 Unicode version

Theorem notm0 3489
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Distinct variable group:    x, A

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3487 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 alnex 1523 . 2  |-  ( A. x  -.  x  e.  A  <->  -. 
E. x  x  e.  A )
31, 2bitr2i 185 1  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  disjnim  4049  pwntru  4259  exmidn0m  4261  mapprc  6762  map0g  6798  ixpprc  6829  ixp0  6841  exmidfodomrlemim  7340  ntreq0  14719  blssioo  15140  lgsquadlem3  15671  pw0ss  15794  pwtrufal  16136
  Copyright terms: Public domain W3C validator