| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notm0 | Unicode version | ||
| Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| notm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3479 |
. 2
| |
| 2 | alnex 1522 |
. 2
| |
| 3 | 1, 2 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: disjnim 4035 pwntru 4243 exmidn0m 4245 mapprc 6739 map0g 6775 ixpprc 6806 ixp0 6818 exmidfodomrlemim 7309 ntreq0 14604 blssioo 15025 lgsquadlem3 15556 pwtrufal 15934 |
| Copyright terms: Public domain | W3C validator |