ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 Unicode version

Theorem notm0 3512
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Distinct variable group:    x, A

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3510 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 alnex 1545 . 2  |-  ( A. x  -.  x  e.  A  <->  -. 
E. x  x  e.  A )
31, 2bitr2i 185 1  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  disjnim  4073  pwntru  4283  exmidn0m  4285  mapprc  6799  map0g  6835  ixpprc  6866  ixp0  6878  exmidfodomrlemim  7379  ntreq0  14806  blssioo  15227  lgsquadlem3  15758  pw0ss  15883  g0wlk0  16081  pwtrufal  16363
  Copyright terms: Public domain W3C validator