| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notm0 | Unicode version | ||
| Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| Ref | Expression |
|---|---|
| notm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3487 |
. 2
| |
| 2 | alnex 1523 |
. 2
| |
| 3 | 1, 2 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: disjnim 4049 pwntru 4259 exmidn0m 4261 mapprc 6762 map0g 6798 ixpprc 6829 ixp0 6841 exmidfodomrlemim 7340 ntreq0 14719 blssioo 15140 lgsquadlem3 15671 pw0ss 15794 pwtrufal 16136 |
| Copyright terms: Public domain | W3C validator |