ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 Unicode version

Theorem notm0 3481
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Distinct variable group:    x, A

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3479 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 alnex 1522 . 2  |-  ( A. x  -.  x  e.  A  <->  -. 
E. x  x  e.  A )
31, 2bitr2i 185 1  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by:  disjnim  4035  pwntru  4243  exmidn0m  4245  mapprc  6739  map0g  6775  ixpprc  6806  ixp0  6818  exmidfodomrlemim  7309  ntreq0  14604  blssioo  15025  lgsquadlem3  15556  pwtrufal  15934
  Copyright terms: Public domain W3C validator