ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notm0 Unicode version

Theorem notm0 3435
Description: A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
notm0  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Distinct variable group:    x, A

Proof of Theorem notm0
StepHypRef Expression
1 eq0 3433 . 2  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
2 alnex 1492 . 2  |-  ( A. x  -.  x  e.  A  <->  -. 
E. x  x  e.  A )
31, 2bitr2i 184 1  |-  ( -. 
E. x  x  e.  A  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  disjnim  3980  pwntru  4185  exmidn0m  4187  mapprc  6630  map0g  6666  ixpprc  6697  ixp0  6709  exmidfodomrlemim  7178  ntreq0  12926  blssioo  13339  pwtrufal  14030
  Copyright terms: Public domain W3C validator