ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el Unicode version

Theorem 0el 3431
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el  |-  ( (/)  e.  A  <->  E. x  e.  A  A. y  -.  y  e.  x )
Distinct variable groups:    x, A    x, y
Allowed substitution hint:    A( y)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2494 . 2  |-  ( (/)  e.  A  <->  E. x  e.  A  x  =  (/) )
2 eq0 3427 . . 3  |-  ( x  =  (/)  <->  A. y  -.  y  e.  x )
32rexbii 2473 . 2  |-  ( E. x  e.  A  x  =  (/)  <->  E. x  e.  A  A. y  -.  y  e.  x )
41, 3bitri 183 1  |-  ( (/)  e.  A  <->  E. x  e.  A  A. y  -.  y  e.  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   E.wrex 2445   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator