ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el Unicode version

Theorem 0el 3473
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el  |-  ( (/)  e.  A  <->  E. x  e.  A  A. y  -.  y  e.  x )
Distinct variable groups:    x, A    x, y
Allowed substitution hint:    A( y)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2525 . 2  |-  ( (/)  e.  A  <->  E. x  e.  A  x  =  (/) )
2 eq0 3469 . . 3  |-  ( x  =  (/)  <->  A. y  -.  y  e.  x )
32rexbii 2504 . 2  |-  ( E. x  e.  A  x  =  (/)  <->  E. x  e.  A  A. y  -.  y  e.  x )
41, 3bitri 184 1  |-  ( (/)  e.  A  <->  E. x  e.  A  A. y  -.  y  e.  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   E.wrex 2476   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator