| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nel0 | GIF version | ||
| Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| nel0.1 | ⊢ ¬ 𝑥 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nel0 | ⊢ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3469 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | nel0.1 | . 2 ⊢ ¬ 𝑥 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1467 | 1 ⊢ 𝐴 = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2167 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |