ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1exp1 Unicode version

Theorem m1exp1 12412
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  =  1  <->  2 
||  N ) )

Proof of Theorem m1exp1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 2z 9474 . . . . . . 7  |-  2  e.  ZZ
2 divides 12300 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. n  e.  ZZ  (
n  x.  2 )  =  N ) )
31, 2mpan 424 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. n  e.  ZZ  ( n  x.  2 )  =  N ) )
4 oveq2 6009 . . . . . . . . 9  |-  ( N  =  ( n  x.  2 )  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( n  x.  2 ) ) )
54eqcoms 2232 . . . . . . . 8  |-  ( ( n  x.  2 )  =  N  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( n  x.  2 ) ) )
6 zcn 9451 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
7 2cnd 9183 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  2  e.  CC )
86, 7mulcomd 8168 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  (
n  x.  2 )  =  ( 2  x.  n ) )
98oveq2d 6017 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( n  x.  2 ) )  =  ( -u 1 ^ ( 2  x.  n ) ) )
10 m1expeven 10808 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  n ) )  =  1 )
119, 10eqtrd 2262 . . . . . . . 8  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( n  x.  2 ) )  =  1 )
125, 11sylan9eqr 2284 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  ( n  x.  2
)  =  N )  ->  ( -u 1 ^ N )  =  1 )
1312rexlimiva 2643 . . . . . 6  |-  ( E. n  e.  ZZ  (
n  x.  2 )  =  N  ->  ( -u 1 ^ N )  =  1 )
143, 13biimtrdi 163 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  ||  N  ->  (
-u 1 ^ N
)  =  1 ) )
1514impcom 125 . . . 4  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  =  1 )
16 simpl 109 . . . 4  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  2  ||  N )
1715, 162thd 175 . . 3  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u 1 ^ N )  =  1  <->  2  ||  N ) )
1817expcom 116 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  N  ->  ( ( -u 1 ^ N )  =  1  <->  2  ||  N ) ) )
19 1ne0 9178 . . . . . 6  |-  1  =/=  0
20 eqcom 2231 . . . . . . 7  |-  ( -u
1  =  1  <->  1  =  -u 1 )
21 ax-1cn 8092 . . . . . . . 8  |-  1  e.  CC
2221eqnegi 8888 . . . . . . 7  |-  ( 1  =  -u 1  <->  1  = 
0 )
2320, 22bitri 184 . . . . . 6  |-  ( -u
1  =  1  <->  1  =  0 )
2419, 23nemtbir 2489 . . . . 5  |-  -.  -u 1  =  1
25 odd2np1 12384 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
26 oveq2 6009 . . . . . . . . . . 11  |-  ( N  =  ( ( 2  x.  n )  +  1 )  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) ) )
2726eqcoms 2232 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) ) )
28 neg1cn 9215 . . . . . . . . . . . . 13  |-  -u 1  e.  CC
2928a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  -u 1  e.  CC )
30 neg1ap0 9219 . . . . . . . . . . . . 13  |-  -u 1 #  0
3130a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  -u 1 #  0 )
321a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
33 id 19 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
3432, 33zmulcld 9575 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
3529, 31, 34expp1zapd 10904 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( -u
1 ^ ( 2  x.  n ) )  x.  -u 1 ) )
3610oveq1d 6016 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( -u 1 ^ (
2  x.  n ) )  x.  -u 1
)  =  ( 1  x.  -u 1 ) )
3728mullidi 8149 . . . . . . . . . . . 12  |-  ( 1  x.  -u 1 )  = 
-u 1
3836, 37eqtrdi 2278 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( -u 1 ^ (
2  x.  n ) )  x.  -u 1
)  =  -u 1
)
3935, 38eqtrd 2262 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) )  =  -u 1 )
4027, 39sylan9eqr 2284 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N )  ->  ( -u 1 ^ N )  =  -u
1 )
4140rexlimiva 2643 . . . . . . . 8  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  ->  ( -u 1 ^ N )  =  -u 1 )
4225, 41biimtrdi 163 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( -u 1 ^ N
)  =  -u 1
) )
4342impcom 125 . . . . . 6  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  =  -u
1 )
4443eqeq1d 2238 . . . . 5  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u
1 ^ N )  =  1  <->  -u 1  =  1 ) )
4524, 44mtbiri 679 . . . 4  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  -.  ( -u 1 ^ N )  =  1 )
46 simpl 109 . . . 4  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  -.  2  ||  N )
4745, 462falsed 707 . . 3  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u
1 ^ N )  =  1  <->  2  ||  N ) )
4847expcom 116 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( ( -u 1 ^ N )  =  1  <->  2  ||  N ) ) )
49 zeo3 12379 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  N  \/  -.  2  ||  N ) )
5018, 48, 49mpjaod 723 1  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  =  1  <->  2 
||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   -ucneg 8318   # cap 8728   2c2 9161   ZZcz 9446   ^cexp 10760    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761  df-dvds 12299
This theorem is referenced by:  2lgs  15783  2lgsoddprm  15792
  Copyright terms: Public domain W3C validator