ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1exp1 Unicode version

Theorem m1exp1 11827
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  =  1  <->  2 
||  N ) )

Proof of Theorem m1exp1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 2z 9211 . . . . . . 7  |-  2  e.  ZZ
2 divides 11719 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. n  e.  ZZ  (
n  x.  2 )  =  N ) )
31, 2mpan 421 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. n  e.  ZZ  ( n  x.  2 )  =  N ) )
4 oveq2 5845 . . . . . . . . 9  |-  ( N  =  ( n  x.  2 )  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( n  x.  2 ) ) )
54eqcoms 2167 . . . . . . . 8  |-  ( ( n  x.  2 )  =  N  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( n  x.  2 ) ) )
6 zcn 9188 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
7 2cnd 8922 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  2  e.  CC )
86, 7mulcomd 7912 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  (
n  x.  2 )  =  ( 2  x.  n ) )
98oveq2d 5853 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( n  x.  2 ) )  =  ( -u 1 ^ ( 2  x.  n ) ) )
10 m1expeven 10493 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  n ) )  =  1 )
119, 10eqtrd 2197 . . . . . . . 8  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( n  x.  2 ) )  =  1 )
125, 11sylan9eqr 2219 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  ( n  x.  2
)  =  N )  ->  ( -u 1 ^ N )  =  1 )
1312rexlimiva 2576 . . . . . 6  |-  ( E. n  e.  ZZ  (
n  x.  2 )  =  N  ->  ( -u 1 ^ N )  =  1 )
143, 13syl6bi 162 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  ||  N  ->  (
-u 1 ^ N
)  =  1 ) )
1514impcom 124 . . . 4  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  =  1 )
16 simpl 108 . . . 4  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  2  ||  N )
1715, 162thd 174 . . 3  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u 1 ^ N )  =  1  <->  2  ||  N ) )
1817expcom 115 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  N  ->  ( ( -u 1 ^ N )  =  1  <->  2  ||  N ) ) )
19 1ne0 8917 . . . . . 6  |-  1  =/=  0
20 eqcom 2166 . . . . . . 7  |-  ( -u
1  =  1  <->  1  =  -u 1 )
21 ax-1cn 7838 . . . . . . . 8  |-  1  e.  CC
2221eqnegi 8629 . . . . . . 7  |-  ( 1  =  -u 1  <->  1  = 
0 )
2320, 22bitri 183 . . . . . 6  |-  ( -u
1  =  1  <->  1  =  0 )
2419, 23nemtbir 2423 . . . . 5  |-  -.  -u 1  =  1
25 odd2np1 11799 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
26 oveq2 5845 . . . . . . . . . . 11  |-  ( N  =  ( ( 2  x.  n )  +  1 )  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) ) )
2726eqcoms 2167 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) ) )
28 neg1cn 8954 . . . . . . . . . . . . 13  |-  -u 1  e.  CC
2928a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  -u 1  e.  CC )
30 neg1ap0 8958 . . . . . . . . . . . . 13  |-  -u 1 #  0
3130a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  -u 1 #  0 )
321a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
33 id 19 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
3432, 33zmulcld 9311 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
3529, 31, 34expp1zapd 10587 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( -u
1 ^ ( 2  x.  n ) )  x.  -u 1 ) )
3610oveq1d 5852 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( -u 1 ^ (
2  x.  n ) )  x.  -u 1
)  =  ( 1  x.  -u 1 ) )
3728mulid2i 7894 . . . . . . . . . . . 12  |-  ( 1  x.  -u 1 )  = 
-u 1
3836, 37eqtrdi 2213 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( -u 1 ^ (
2  x.  n ) )  x.  -u 1
)  =  -u 1
)
3935, 38eqtrd 2197 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) )  =  -u 1 )
4027, 39sylan9eqr 2219 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N )  ->  ( -u 1 ^ N )  =  -u
1 )
4140rexlimiva 2576 . . . . . . . 8  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  ->  ( -u 1 ^ N )  =  -u 1 )
4225, 41syl6bi 162 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( -u 1 ^ N
)  =  -u 1
) )
4342impcom 124 . . . . . 6  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  =  -u
1 )
4443eqeq1d 2173 . . . . 5  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u
1 ^ N )  =  1  <->  -u 1  =  1 ) )
4524, 44mtbiri 665 . . . 4  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  -.  ( -u 1 ^ N )  =  1 )
46 simpl 108 . . . 4  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  -.  2  ||  N )
4745, 462falsed 692 . . 3  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u
1 ^ N )  =  1  <->  2  ||  N ) )
4847expcom 115 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( ( -u 1 ^ N )  =  1  <->  2  ||  N ) ) )
49 zeo3 11794 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  N  \/  -.  2  ||  N ) )
5018, 48, 49mpjaod 708 1  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  =  1  <->  2 
||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   E.wrex 2443   class class class wbr 3977  (class class class)co 5837   CCcc 7743   0cc0 7745   1c1 7746    + caddc 7748    x. cmul 7750   -ucneg 8062   # cap 8471   2c2 8900   ZZcz 9183   ^cexp 10445    || cdvds 11717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-xor 1365  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-frec 6351  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-n0 9107  df-z 9184  df-uz 9459  df-seqfrec 10372  df-exp 10446  df-dvds 11718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator