ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2oprc Unicode version

Theorem snnen2oprc 6762
Description: A singleton  { A } is never equinumerous with the ordinal number 2. If  A is a set, see snnen2og 6761. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2oprc  |-  ( -.  A  e.  _V  ->  -. 
{ A }  ~~  2o )

Proof of Theorem snnen2oprc
StepHypRef Expression
1 2on0 6331 . . 3  |-  2o  =/=  (/)
2 ensymb 6682 . . . 4  |-  ( (/)  ~~  2o  <->  2o  ~~  (/) )
3 en0 6697 . . . 4  |-  ( 2o 
~~  (/)  <->  2o  =  (/) )
42, 3bitri 183 . . 3  |-  ( (/)  ~~  2o  <->  2o  =  (/) )
51, 4nemtbir 2398 . 2  |-  -.  (/)  ~~  2o
6 snprc 3596 . . . 4  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
76biimpi 119 . . 3  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
87breq1d 3947 . 2  |-  ( -.  A  e.  _V  ->  ( { A }  ~~  2o 
<->  (/)  ~~  2o ) )
95, 8mtbiri 665 1  |-  ( -.  A  e.  _V  ->  -. 
{ A }  ~~  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1332    e. wcel 1481   _Vcvv 2689   (/)c0 3368   {csn 3532   class class class wbr 3937   2oc2o 6315    ~~ cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator