| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnen2oprc | Unicode version | ||
| Description: A singleton |
| Ref | Expression |
|---|---|
| snnen2oprc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 6572 |
. . 3
| |
| 2 | ensymb 6932 |
. . . 4
| |
| 3 | en0 6947 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | 1, 4 | nemtbir 2489 |
. 2
|
| 6 | snprc 3731 |
. . . 4
| |
| 7 | 6 | biimpi 120 |
. . 3
|
| 8 | 7 | breq1d 4093 |
. 2
|
| 9 | 5, 8 | mtbiri 679 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6562 df-2o 6563 df-er 6680 df-en 6888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |