ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5 Unicode version

Theorem php5 7015
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php5  |-  ( A  e.  om  ->  -.  A  ~~  suc  A )

Proof of Theorem php5
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 suceq 4492 . . . 4  |-  ( w  =  (/)  ->  suc  w  =  suc  (/) )
31, 2breq12d 4095 . . 3  |-  ( w  =  (/)  ->  ( w 
~~  suc  w  <->  (/)  ~~  suc  (/) ) )
43notbid 671 . 2  |-  ( w  =  (/)  ->  ( -.  w  ~~  suc  w  <->  -.  (/)  ~~  suc  (/) ) )
5 id 19 . . . 4  |-  ( w  =  k  ->  w  =  k )
6 suceq 4492 . . . 4  |-  ( w  =  k  ->  suc  w  =  suc  k )
75, 6breq12d 4095 . . 3  |-  ( w  =  k  ->  (
w  ~~  suc  w  <->  k  ~~  suc  k ) )
87notbid 671 . 2  |-  ( w  =  k  ->  ( -.  w  ~~  suc  w  <->  -.  k  ~~  suc  k
) )
9 id 19 . . . 4  |-  ( w  =  suc  k  ->  w  =  suc  k )
10 suceq 4492 . . . 4  |-  ( w  =  suc  k  ->  suc  w  =  suc  suc  k )
119, 10breq12d 4095 . . 3  |-  ( w  =  suc  k  -> 
( w  ~~  suc  w 
<->  suc  k  ~~  suc  suc  k ) )
1211notbid 671 . 2  |-  ( w  =  suc  k  -> 
( -.  w  ~~  suc  w  <->  -.  suc  k  ~~  suc  suc  k ) )
13 id 19 . . . 4  |-  ( w  =  A  ->  w  =  A )
14 suceq 4492 . . . 4  |-  ( w  =  A  ->  suc  w  =  suc  A )
1513, 14breq12d 4095 . . 3  |-  ( w  =  A  ->  (
w  ~~  suc  w  <->  A  ~~  suc  A ) )
1615notbid 671 . 2  |-  ( w  =  A  ->  ( -.  w  ~~  suc  w  <->  -.  A  ~~  suc  A
) )
17 peano1 4685 . . . . 5  |-  (/)  e.  om
18 peano3 4687 . . . . 5  |-  ( (/)  e.  om  ->  suc  (/)  =/=  (/) )
1917, 18ax-mp 5 . . . 4  |-  suc  (/)  =/=  (/)
20 en0 6945 . . . 4  |-  ( suc  (/)  ~~  (/)  <->  suc  (/)  =  (/) )
2119, 20nemtbir 2489 . . 3  |-  -.  suc  (/)  ~~  (/)
22 ensymb 6930 . . 3  |-  ( suc  (/)  ~~  (/)  <->  (/)  ~~  suc  (/) )
2321, 22mtbi 674 . 2  |-  -.  (/)  ~~  suc  (/)
24 peano2 4686 . . . 4  |-  ( k  e.  om  ->  suc  k  e.  om )
25 vex 2802 . . . . 5  |-  k  e. 
_V
2625sucex 4590 . . . . 5  |-  suc  k  e.  _V
2725, 26phplem4 7012 . . . 4  |-  ( ( k  e.  om  /\  suc  k  e.  om )  ->  ( suc  k  ~~  suc  suc  k  ->  k 
~~  suc  k )
)
2824, 27mpdan 421 . . 3  |-  ( k  e.  om  ->  ( suc  k  ~~  suc  suc  k  ->  k  ~~  suc  k ) )
2928con3d 634 . 2  |-  ( k  e.  om  ->  ( -.  k  ~~  suc  k  ->  -.  suc  k  ~~  suc  suc  k ) )
304, 8, 12, 16, 23, 29finds 4691 1  |-  ( A  e.  om  ->  -.  A  ~~  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   class class class wbr 4082   suc csuc 4455   omcom 4681    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886
This theorem is referenced by:  snnen2og  7016  1nen2  7018  php5dom  7020  php5fin  7040
  Copyright terms: Public domain W3C validator