ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb Unicode version

Theorem djulclb 7222
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb  |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C
)  e.  ( A B ) ) )

Proof of Theorem djulclb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 djulcl 7218 . 2  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
2 1n0 6578 . . . . . . . . . 10  |-  1o  =/=  (/)
32necomi 2485 . . . . . . . . 9  |-  (/)  =/=  1o
4 0ex 4211 . . . . . . . . . 10  |-  (/)  e.  _V
54elsn 3682 . . . . . . . . 9  |-  ( (/)  e.  { 1o }  <->  (/)  =  1o )
63, 5nemtbir 2489 . . . . . . . 8  |-  -.  (/)  e.  { 1o }
76intnanr 935 . . . . . . 7  |-  -.  ( (/) 
e.  { 1o }  /\  C  e.  B
)
8 opelxp 4749 . . . . . . 7  |-  ( <. (/)
,  C >.  e.  ( { 1o }  X.  B )  <->  ( (/)  e.  { 1o }  /\  C  e.  B ) )
97, 8mtbir 675 . . . . . 6  |-  -.  <. (/)
,  C >.  e.  ( { 1o }  X.  B )
10 elex 2811 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  C  e.  _V )
11 opexg 4314 . . . . . . . . . . . . 13  |-  ( (
(/)  e.  _V  /\  C  e.  V )  ->  <. (/) ,  C >.  e.  _V )
124, 11mpan 424 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  <. (/) ,  C >.  e.  _V )
13 opeq2 3858 . . . . . . . . . . . . 13  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
14 df-inl 7214 . . . . . . . . . . . . 13  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
1513, 14fvmptg 5710 . . . . . . . . . . . 12  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  _V )  ->  (inl `  C
)  =  <. (/) ,  C >. )
1610, 12, 15syl2anc 411 . . . . . . . . . . 11  |-  ( C  e.  V  ->  (inl `  C )  =  <. (/)
,  C >. )
1716adantr 276 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  (inl `  C
)  =  <. (/) ,  C >. )
18 df-dju 7205 . . . . . . . . . . . . 13  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1918eleq2i 2296 . . . . . . . . . . . 12  |-  ( (inl
`  C )  e.  ( A B )  <->  (inl
`  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) ) )
2019biimpi 120 . . . . . . . . . . 11  |-  ( (inl
`  C )  e.  ( A B )  ->  (inl `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) ) )
2120adantl 277 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  (inl `  C
)  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
2217, 21eqeltrrd 2307 . . . . . . . . 9  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
23 elun 3345 . . . . . . . . 9  |-  ( <. (/)
,  C >.  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  \/  <. (/) ,  C >.  e.  ( { 1o }  X.  B ) ) )
2422, 23sylib 122 . . . . . . . 8  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  \/  <. (/) ,  C >.  e.  ( { 1o }  X.  B ) ) )
2524orcomd 734 . . . . . . 7  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( <. (/)
,  C >.  e.  ( { 1o }  X.  B )  \/  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) ) )
2625ord 729 . . . . . 6  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( -.  <. (/)
,  C >.  e.  ( { 1o }  X.  B )  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) ) )
279, 26mpi 15 . . . . 5  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
28 opelxp 4749 . . . . 5  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  <->  ( (/)  e.  { (/)
}  /\  C  e.  A ) )
2927, 28sylib 122 . . . 4  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( (/)  e.  { (/)
}  /\  C  e.  A ) )
3029simprd 114 . . 3  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  C  e.  A )
3130ex 115 . 2  |-  ( C  e.  V  ->  (
(inl `  C )  e.  ( A B )  ->  C  e.  A ) )
321, 31impbid2 143 1  |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C
)  e.  ( A B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195   (/)c0 3491   {csn 3666   <.cop 3669    X. cxp 4717   ` cfv 5318   1oc1o 6555   ⊔ cdju 7204  inlcinl 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-1o 6562  df-dju 7205  df-inl 7214
This theorem is referenced by:  exmidfodomrlemr  7380
  Copyright terms: Public domain W3C validator