| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djulclb | Unicode version | ||
| Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| djulclb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulcl 7218 |
. 2
| |
| 2 | 1n0 6578 |
. . . . . . . . . 10
| |
| 3 | 2 | necomi 2485 |
. . . . . . . . 9
|
| 4 | 0ex 4211 |
. . . . . . . . . 10
| |
| 5 | 4 | elsn 3682 |
. . . . . . . . 9
|
| 6 | 3, 5 | nemtbir 2489 |
. . . . . . . 8
|
| 7 | 6 | intnanr 935 |
. . . . . . 7
|
| 8 | opelxp 4749 |
. . . . . . 7
| |
| 9 | 7, 8 | mtbir 675 |
. . . . . 6
|
| 10 | elex 2811 |
. . . . . . . . . . . 12
| |
| 11 | opexg 4314 |
. . . . . . . . . . . . 13
| |
| 12 | 4, 11 | mpan 424 |
. . . . . . . . . . . 12
|
| 13 | opeq2 3858 |
. . . . . . . . . . . . 13
| |
| 14 | df-inl 7214 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | fvmptg 5710 |
. . . . . . . . . . . 12
|
| 16 | 10, 12, 15 | syl2anc 411 |
. . . . . . . . . . 11
|
| 17 | 16 | adantr 276 |
. . . . . . . . . 10
|
| 18 | df-dju 7205 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | eleq2i 2296 |
. . . . . . . . . . . 12
|
| 20 | 19 | biimpi 120 |
. . . . . . . . . . 11
|
| 21 | 20 | adantl 277 |
. . . . . . . . . 10
|
| 22 | 17, 21 | eqeltrrd 2307 |
. . . . . . . . 9
|
| 23 | elun 3345 |
. . . . . . . . 9
| |
| 24 | 22, 23 | sylib 122 |
. . . . . . . 8
|
| 25 | 24 | orcomd 734 |
. . . . . . 7
|
| 26 | 25 | ord 729 |
. . . . . 6
|
| 27 | 9, 26 | mpi 15 |
. . . . 5
|
| 28 | opelxp 4749 |
. . . . 5
| |
| 29 | 27, 28 | sylib 122 |
. . . 4
|
| 30 | 29 | simprd 114 |
. . 3
|
| 31 | 30 | ex 115 |
. 2
|
| 32 | 1, 31 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-1o 6562 df-dju 7205 df-inl 7214 |
| This theorem is referenced by: exmidfodomrlemr 7380 |
| Copyright terms: Public domain | W3C validator |