Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djulclb | Unicode version |
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.) |
Ref | Expression |
---|---|
djulclb | inl ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulcl 7028 | . 2 inl ⊔ | |
2 | 1n0 6411 | . . . . . . . . . 10 | |
3 | 2 | necomi 2425 | . . . . . . . . 9 |
4 | 0ex 4116 | . . . . . . . . . 10 | |
5 | 4 | elsn 3599 | . . . . . . . . 9 |
6 | 3, 5 | nemtbir 2429 | . . . . . . . 8 |
7 | 6 | intnanr 925 | . . . . . . 7 |
8 | opelxp 4641 | . . . . . . 7 | |
9 | 7, 8 | mtbir 666 | . . . . . 6 |
10 | elex 2741 | . . . . . . . . . . . 12 | |
11 | opexg 4213 | . . . . . . . . . . . . 13 | |
12 | 4, 11 | mpan 422 | . . . . . . . . . . . 12 |
13 | opeq2 3766 | . . . . . . . . . . . . 13 | |
14 | df-inl 7024 | . . . . . . . . . . . . 13 inl | |
15 | 13, 14 | fvmptg 5572 | . . . . . . . . . . . 12 inl |
16 | 10, 12, 15 | syl2anc 409 | . . . . . . . . . . 11 inl |
17 | 16 | adantr 274 | . . . . . . . . . 10 inl ⊔ inl |
18 | df-dju 7015 | . . . . . . . . . . . . 13 ⊔ | |
19 | 18 | eleq2i 2237 | . . . . . . . . . . . 12 inl ⊔ inl |
20 | 19 | biimpi 119 | . . . . . . . . . . 11 inl ⊔ inl |
21 | 20 | adantl 275 | . . . . . . . . . 10 inl ⊔ inl |
22 | 17, 21 | eqeltrrd 2248 | . . . . . . . . 9 inl ⊔ |
23 | elun 3268 | . . . . . . . . 9 | |
24 | 22, 23 | sylib 121 | . . . . . . . 8 inl ⊔ |
25 | 24 | orcomd 724 | . . . . . . 7 inl ⊔ |
26 | 25 | ord 719 | . . . . . 6 inl ⊔ |
27 | 9, 26 | mpi 15 | . . . . 5 inl ⊔ |
28 | opelxp 4641 | . . . . 5 | |
29 | 27, 28 | sylib 121 | . . . 4 inl ⊔ |
30 | 29 | simprd 113 | . . 3 inl ⊔ |
31 | 30 | ex 114 | . 2 inl ⊔ |
32 | 1, 31 | impbid2 142 | 1 inl ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 cvv 2730 cun 3119 c0 3414 csn 3583 cop 3586 cxp 4609 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-1o 6395 df-dju 7015 df-inl 7024 |
This theorem is referenced by: exmidfodomrlemr 7179 |
Copyright terms: Public domain | W3C validator |