Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djulclb | Unicode version |
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.) |
Ref | Expression |
---|---|
djulclb | inl ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulcl 7016 | . 2 inl ⊔ | |
2 | 1n0 6400 | . . . . . . . . . 10 | |
3 | 2 | necomi 2421 | . . . . . . . . 9 |
4 | 0ex 4109 | . . . . . . . . . 10 | |
5 | 4 | elsn 3592 | . . . . . . . . 9 |
6 | 3, 5 | nemtbir 2425 | . . . . . . . 8 |
7 | 6 | intnanr 920 | . . . . . . 7 |
8 | opelxp 4634 | . . . . . . 7 | |
9 | 7, 8 | mtbir 661 | . . . . . 6 |
10 | elex 2737 | . . . . . . . . . . . 12 | |
11 | opexg 4206 | . . . . . . . . . . . . 13 | |
12 | 4, 11 | mpan 421 | . . . . . . . . . . . 12 |
13 | opeq2 3759 | . . . . . . . . . . . . 13 | |
14 | df-inl 7012 | . . . . . . . . . . . . 13 inl | |
15 | 13, 14 | fvmptg 5562 | . . . . . . . . . . . 12 inl |
16 | 10, 12, 15 | syl2anc 409 | . . . . . . . . . . 11 inl |
17 | 16 | adantr 274 | . . . . . . . . . 10 inl ⊔ inl |
18 | df-dju 7003 | . . . . . . . . . . . . 13 ⊔ | |
19 | 18 | eleq2i 2233 | . . . . . . . . . . . 12 inl ⊔ inl |
20 | 19 | biimpi 119 | . . . . . . . . . . 11 inl ⊔ inl |
21 | 20 | adantl 275 | . . . . . . . . . 10 inl ⊔ inl |
22 | 17, 21 | eqeltrrd 2244 | . . . . . . . . 9 inl ⊔ |
23 | elun 3263 | . . . . . . . . 9 | |
24 | 22, 23 | sylib 121 | . . . . . . . 8 inl ⊔ |
25 | 24 | orcomd 719 | . . . . . . 7 inl ⊔ |
26 | 25 | ord 714 | . . . . . 6 inl ⊔ |
27 | 9, 26 | mpi 15 | . . . . 5 inl ⊔ |
28 | opelxp 4634 | . . . . 5 | |
29 | 27, 28 | sylib 121 | . . . 4 inl ⊔ |
30 | 29 | simprd 113 | . . 3 inl ⊔ |
31 | 30 | ex 114 | . 2 inl ⊔ |
32 | 1, 31 | impbid2 142 | 1 inl ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 cvv 2726 cun 3114 c0 3409 csn 3576 cop 3579 cxp 4602 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-1o 6384 df-dju 7003 df-inl 7012 |
This theorem is referenced by: exmidfodomrlemr 7158 |
Copyright terms: Public domain | W3C validator |