ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb Unicode version

Theorem djulclb 6892
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb  |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C
)  e.  ( A B ) ) )

Proof of Theorem djulclb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 djulcl 6888 . 2  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
2 1n0 6283 . . . . . . . . . 10  |-  1o  =/=  (/)
32necomi 2367 . . . . . . . . 9  |-  (/)  =/=  1o
4 0ex 4015 . . . . . . . . . 10  |-  (/)  e.  _V
54elsn 3509 . . . . . . . . 9  |-  ( (/)  e.  { 1o }  <->  (/)  =  1o )
63, 5nemtbir 2371 . . . . . . . 8  |-  -.  (/)  e.  { 1o }
76intnanr 898 . . . . . . 7  |-  -.  ( (/) 
e.  { 1o }  /\  C  e.  B
)
8 opelxp 4529 . . . . . . 7  |-  ( <. (/)
,  C >.  e.  ( { 1o }  X.  B )  <->  ( (/)  e.  { 1o }  /\  C  e.  B ) )
97, 8mtbir 643 . . . . . 6  |-  -.  <. (/)
,  C >.  e.  ( { 1o }  X.  B )
10 elex 2668 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  C  e.  _V )
11 opexg 4110 . . . . . . . . . . . . 13  |-  ( (
(/)  e.  _V  /\  C  e.  V )  ->  <. (/) ,  C >.  e.  _V )
124, 11mpan 418 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  <. (/) ,  C >.  e.  _V )
13 opeq2 3672 . . . . . . . . . . . . 13  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
14 df-inl 6884 . . . . . . . . . . . . 13  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
1513, 14fvmptg 5451 . . . . . . . . . . . 12  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  _V )  ->  (inl `  C
)  =  <. (/) ,  C >. )
1610, 12, 15syl2anc 406 . . . . . . . . . . 11  |-  ( C  e.  V  ->  (inl `  C )  =  <. (/)
,  C >. )
1716adantr 272 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  (inl `  C
)  =  <. (/) ,  C >. )
18 df-dju 6875 . . . . . . . . . . . . 13  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1918eleq2i 2181 . . . . . . . . . . . 12  |-  ( (inl
`  C )  e.  ( A B )  <->  (inl
`  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) ) )
2019biimpi 119 . . . . . . . . . . 11  |-  ( (inl
`  C )  e.  ( A B )  ->  (inl `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) ) )
2120adantl 273 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  (inl `  C
)  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
2217, 21eqeltrrd 2192 . . . . . . . . 9  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
23 elun 3183 . . . . . . . . 9  |-  ( <. (/)
,  C >.  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  \/  <. (/) ,  C >.  e.  ( { 1o }  X.  B ) ) )
2422, 23sylib 121 . . . . . . . 8  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  \/  <. (/) ,  C >.  e.  ( { 1o }  X.  B ) ) )
2524orcomd 701 . . . . . . 7  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( <. (/)
,  C >.  e.  ( { 1o }  X.  B )  \/  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) ) )
2625ord 696 . . . . . 6  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( -.  <. (/)
,  C >.  e.  ( { 1o }  X.  B )  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) ) )
279, 26mpi 15 . . . . 5  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
28 opelxp 4529 . . . . 5  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  <->  ( (/)  e.  { (/)
}  /\  C  e.  A ) )
2927, 28sylib 121 . . . 4  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( (/)  e.  { (/)
}  /\  C  e.  A ) )
3029simprd 113 . . 3  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  C  e.  A )
3130ex 114 . 2  |-  ( C  e.  V  ->  (
(inl `  C )  e.  ( A B )  ->  C  e.  A ) )
321, 31impbid2 142 1  |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C
)  e.  ( A B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    = wceq 1314    e. wcel 1463   _Vcvv 2657    u. cun 3035   (/)c0 3329   {csn 3493   <.cop 3496    X. cxp 4497   ` cfv 5081   1oc1o 6260   ⊔ cdju 6874  inlcinl 6882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-suc 4253  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-1o 6267  df-dju 6875  df-inl 6884
This theorem is referenced by:  exmidfodomrlemr  7006
  Copyright terms: Public domain W3C validator