ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb Unicode version

Theorem djulclb 7121
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb  |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C
)  e.  ( A B ) ) )

Proof of Theorem djulclb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 djulcl 7117 . 2  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
2 1n0 6490 . . . . . . . . . 10  |-  1o  =/=  (/)
32necomi 2452 . . . . . . . . 9  |-  (/)  =/=  1o
4 0ex 4160 . . . . . . . . . 10  |-  (/)  e.  _V
54elsn 3638 . . . . . . . . 9  |-  ( (/)  e.  { 1o }  <->  (/)  =  1o )
63, 5nemtbir 2456 . . . . . . . 8  |-  -.  (/)  e.  { 1o }
76intnanr 931 . . . . . . 7  |-  -.  ( (/) 
e.  { 1o }  /\  C  e.  B
)
8 opelxp 4693 . . . . . . 7  |-  ( <. (/)
,  C >.  e.  ( { 1o }  X.  B )  <->  ( (/)  e.  { 1o }  /\  C  e.  B ) )
97, 8mtbir 672 . . . . . 6  |-  -.  <. (/)
,  C >.  e.  ( { 1o }  X.  B )
10 elex 2774 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  C  e.  _V )
11 opexg 4261 . . . . . . . . . . . . 13  |-  ( (
(/)  e.  _V  /\  C  e.  V )  ->  <. (/) ,  C >.  e.  _V )
124, 11mpan 424 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  <. (/) ,  C >.  e.  _V )
13 opeq2 3809 . . . . . . . . . . . . 13  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
14 df-inl 7113 . . . . . . . . . . . . 13  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
1513, 14fvmptg 5637 . . . . . . . . . . . 12  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  _V )  ->  (inl `  C
)  =  <. (/) ,  C >. )
1610, 12, 15syl2anc 411 . . . . . . . . . . 11  |-  ( C  e.  V  ->  (inl `  C )  =  <. (/)
,  C >. )
1716adantr 276 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  (inl `  C
)  =  <. (/) ,  C >. )
18 df-dju 7104 . . . . . . . . . . . . 13  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1918eleq2i 2263 . . . . . . . . . . . 12  |-  ( (inl
`  C )  e.  ( A B )  <->  (inl
`  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) ) )
2019biimpi 120 . . . . . . . . . . 11  |-  ( (inl
`  C )  e.  ( A B )  ->  (inl `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) ) )
2120adantl 277 . . . . . . . . . 10  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  (inl `  C
)  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
2217, 21eqeltrrd 2274 . . . . . . . . 9  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
23 elun 3304 . . . . . . . . 9  |-  ( <. (/)
,  C >.  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  \/  <. (/) ,  C >.  e.  ( { 1o }  X.  B ) ) )
2422, 23sylib 122 . . . . . . . 8  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  \/  <. (/) ,  C >.  e.  ( { 1o }  X.  B ) ) )
2524orcomd 730 . . . . . . 7  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( <. (/)
,  C >.  e.  ( { 1o }  X.  B )  \/  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) ) )
2625ord 725 . . . . . 6  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( -.  <. (/)
,  C >.  e.  ( { 1o }  X.  B )  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) ) )
279, 26mpi 15 . . . . 5  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
28 opelxp 4693 . . . . 5  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  <->  ( (/)  e.  { (/)
}  /\  C  e.  A ) )
2927, 28sylib 122 . . . 4  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  ( (/)  e.  { (/)
}  /\  C  e.  A ) )
3029simprd 114 . . 3  |-  ( ( C  e.  V  /\  (inl `  C )  e.  ( A B )
)  ->  C  e.  A )
3130ex 115 . 2  |-  ( C  e.  V  ->  (
(inl `  C )  e.  ( A B )  ->  C  e.  A ) )
321, 31impbid2 143 1  |-  ( C  e.  V  ->  ( C  e.  A  <->  (inl `  C
)  e.  ( A B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   (/)c0 3450   {csn 3622   <.cop 3625    X. cxp 4661   ` cfv 5258   1oc1o 6467   ⊔ cdju 7103  inlcinl 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-1o 6474  df-dju 7104  df-inl 7113
This theorem is referenced by:  exmidfodomrlemr  7269
  Copyright terms: Public domain W3C validator