| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djulclb | Unicode version | ||
| Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| djulclb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulcl 7179 |
. 2
| |
| 2 | 1n0 6541 |
. . . . . . . . . 10
| |
| 3 | 2 | necomi 2463 |
. . . . . . . . 9
|
| 4 | 0ex 4187 |
. . . . . . . . . 10
| |
| 5 | 4 | elsn 3659 |
. . . . . . . . 9
|
| 6 | 3, 5 | nemtbir 2467 |
. . . . . . . 8
|
| 7 | 6 | intnanr 932 |
. . . . . . 7
|
| 8 | opelxp 4723 |
. . . . . . 7
| |
| 9 | 7, 8 | mtbir 673 |
. . . . . 6
|
| 10 | elex 2788 |
. . . . . . . . . . . 12
| |
| 11 | opexg 4290 |
. . . . . . . . . . . . 13
| |
| 12 | 4, 11 | mpan 424 |
. . . . . . . . . . . 12
|
| 13 | opeq2 3834 |
. . . . . . . . . . . . 13
| |
| 14 | df-inl 7175 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | fvmptg 5678 |
. . . . . . . . . . . 12
|
| 16 | 10, 12, 15 | syl2anc 411 |
. . . . . . . . . . 11
|
| 17 | 16 | adantr 276 |
. . . . . . . . . 10
|
| 18 | df-dju 7166 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | eleq2i 2274 |
. . . . . . . . . . . 12
|
| 20 | 19 | biimpi 120 |
. . . . . . . . . . 11
|
| 21 | 20 | adantl 277 |
. . . . . . . . . 10
|
| 22 | 17, 21 | eqeltrrd 2285 |
. . . . . . . . 9
|
| 23 | elun 3322 |
. . . . . . . . 9
| |
| 24 | 22, 23 | sylib 122 |
. . . . . . . 8
|
| 25 | 24 | orcomd 731 |
. . . . . . 7
|
| 26 | 25 | ord 726 |
. . . . . 6
|
| 27 | 9, 26 | mpi 15 |
. . . . 5
|
| 28 | opelxp 4723 |
. . . . 5
| |
| 29 | 27, 28 | sylib 122 |
. . . 4
|
| 30 | 29 | simprd 114 |
. . 3
|
| 31 | 30 | ex 115 |
. 2
|
| 32 | 1, 31 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-1o 6525 df-dju 7166 df-inl 7175 |
| This theorem is referenced by: exmidfodomrlemr 7341 |
| Copyright terms: Public domain | W3C validator |