Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwle2 Unicode version

Theorem pwle2 15489
Description: An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
Assertion
Ref Expression
pwle2  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  N  C_  2o )
Distinct variable group:    x, N
Allowed substitution hints:    T( x)    G( x)

Proof of Theorem pwle2
StepHypRef Expression
1 simplr 528 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  G : T -1-1-> ~P 1o )
2 f1f 5459 . . . . . . . . . . 11  |-  ( G : T -1-1-> ~P 1o  ->  G : T --> ~P 1o )
31, 2syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  G : T --> ~P 1o )
4 nnon 4642 . . . . . . . . . . . . . 14  |-  ( N  e.  om  ->  N  e.  On )
54ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  N  e.  On )
6 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  2o  e.  N )
7 1lt2o 6495 . . . . . . . . . . . . . 14  |-  1o  e.  2o
86, 7jctil 312 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( 1o  e.  2o  /\  2o  e.  N ) )
9 ontr1 4420 . . . . . . . . . . . . 13  |-  ( N  e.  On  ->  (
( 1o  e.  2o  /\  2o  e.  N )  ->  1o  e.  N
) )
105, 8, 9sylc 62 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  1o  e.  N )
11 0lt1o 6493 . . . . . . . . . . . 12  |-  (/)  e.  1o
12 opelxpi 4691 . . . . . . . . . . . 12  |-  ( ( 1o  e.  N  /\  (/) 
e.  1o )  ->  <. 1o ,  (/) >.  e.  ( N  X.  1o ) )
1310, 11, 12sylancl 413 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  <. 1o ,  (/)
>.  e.  ( N  X.  1o ) )
14 pwle2.t . . . . . . . . . . . 12  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
15 iunxpconst 4719 . . . . . . . . . . . 12  |-  U_ x  e.  N  ( {
x }  X.  1o )  =  ( N  X.  1o )
1614, 15eqtri 2214 . . . . . . . . . . 11  |-  T  =  ( N  X.  1o )
1713, 16eleqtrrdi 2287 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  <. 1o ,  (/)
>.  e.  T )
183, 17ffvelcdmd 5694 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. 1o ,  (/)
>. )  e.  ~P 1o )
1918elpwid 3612 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. 1o ,  (/)
>. )  C_  1o )
20 df1o2 6482 . . . . . . . 8  |-  1o  =  { (/) }
2119, 20sseqtrdi 3227 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. 1o ,  (/)
>. )  C_  { (/) } )
22 pwtrufal 15488 . . . . . . 7  |-  ( ( G `  <. 1o ,  (/)
>. )  C_  { (/) }  ->  -.  -.  (
( G `  <. 1o ,  (/) >. )  =  (/)  \/  ( G `  <. 1o ,  (/) >. )  =  { (/)
} ) )
2321, 22syl 14 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  -.  ( ( G `  <. 1o ,  (/) >. )  =  (/)  \/  ( G `
 <. 1o ,  (/) >.
)  =  { (/) } ) )
24 ioran 753 . . . . . 6  |-  ( -.  ( ( G `  <. 1o ,  (/) >. )  =  (/)  \/  ( G `
 <. 1o ,  (/) >.
)  =  { (/) } )  <->  ( -.  ( G `  <. 1o ,  (/)
>. )  =  (/)  /\  -.  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} ) )
2523, 24sylnib 677 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( -.  ( G `  <. 1o ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} ) )
26 1n0 6485 . . . . . . . . . . 11  |-  1o  =/=  (/)
2726neii 2366 . . . . . . . . . 10  |-  -.  1o  =  (/)
28 1oex 6477 . . . . . . . . . . 11  |-  1o  e.  _V
29 0ex 4156 . . . . . . . . . . 11  |-  (/)  e.  _V
3028, 29opth1 4265 . . . . . . . . . 10  |-  ( <. 1o ,  (/) >.  =  <. (/)
,  (/) >.  ->  1o  =  (/) )
3127, 30mto 663 . . . . . . . . 9  |-  -.  <. 1o ,  (/) >.  =  <. (/)
,  (/) >.
32 0lt2o 6494 . . . . . . . . . . . . . 14  |-  (/)  e.  2o
336, 32jctil 312 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( (/) 
e.  2o  /\  2o  e.  N ) )
34 ontr1 4420 . . . . . . . . . . . . 13  |-  ( N  e.  On  ->  (
( (/)  e.  2o  /\  2o  e.  N )  ->  (/) 
e.  N ) )
355, 33, 34sylc 62 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  (/)  e.  N
)
36 opelxpi 4691 . . . . . . . . . . . 12  |-  ( (
(/)  e.  N  /\  (/) 
e.  1o )  ->  <.
(/) ,  (/) >.  e.  ( N  X.  1o ) )
3735, 11, 36sylancl 413 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  <. (/) ,  (/) >.  e.  ( N  X.  1o ) )
3837, 16eleqtrrdi 2287 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  <. (/) ,  (/) >.  e.  T )
39 f1veqaeq 5812 . . . . . . . . . 10  |-  ( ( G : T -1-1-> ~P 1o  /\  ( <. 1o ,  (/)
>.  e.  T  /\  <. (/)
,  (/) >.  e.  T
) )  ->  (
( G `  <. 1o ,  (/) >. )  =  ( G `  <. (/) ,  (/) >.
)  ->  <. 1o ,  (/)
>.  =  <. (/) ,  (/) >.
) )
401, 17, 38, 39syl12anc 1247 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  (
( G `  <. 1o ,  (/) >. )  =  ( G `  <. (/) ,  (/) >.
)  ->  <. 1o ,  (/)
>.  =  <. (/) ,  (/) >.
) )
4131, 40mtoi 665 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( G `  <. 1o ,  (/)
>. )  =  ( G `  <. (/) ,  (/) >.
) )
4241adantr 276 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 1o ,  (/) >. )  =  ( G `  <. (/) ,  (/) >.
) )
43 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  -> 
( G `  <. (/)
,  (/) >. )  =  (/) )
4443eqeq2d 2205 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  -> 
( ( G `  <. 1o ,  (/) >. )  =  ( G `  <.
(/) ,  (/) >. )  <->  ( G `  <. 1o ,  (/)
>. )  =  (/) ) )
4542, 44mtbid 673 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 1o ,  (/) >. )  =  (/) )
46 2on0 6479 . . . . . . . . . . . . . 14  |-  2o  =/=  (/)
4746nesymi 2410 . . . . . . . . . . . . 13  |-  -.  (/)  =  2o
4829, 29opth1 4265 . . . . . . . . . . . . 13  |-  ( <. (/)
,  (/) >.  =  <. 2o ,  (/) >.  ->  (/)  =  2o )
4947, 48mto 663 . . . . . . . . . . . 12  |-  -.  <. (/)
,  (/) >.  =  <. 2o ,  (/) >.
50 opelxpi 4691 . . . . . . . . . . . . . . 15  |-  ( ( 2o  e.  N  /\  (/) 
e.  1o )  ->  <. 2o ,  (/) >.  e.  ( N  X.  1o ) )
516, 11, 50sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  <. 2o ,  (/)
>.  e.  ( N  X.  1o ) )
5251, 16eleqtrrdi 2287 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  <. 2o ,  (/)
>.  e.  T )
53 f1veqaeq 5812 . . . . . . . . . . . . 13  |-  ( ( G : T -1-1-> ~P 1o  /\  ( <. (/) ,  (/) >.  e.  T  /\  <. 2o ,  (/)
>.  e.  T ) )  ->  ( ( G `
 <. (/) ,  (/) >. )  =  ( G `  <. 2o ,  (/) >. )  -> 
<. (/) ,  (/) >.  =  <. 2o ,  (/) >. ) )
541, 38, 52, 53syl12anc 1247 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  (
( G `  <. (/)
,  (/) >. )  =  ( G `  <. 2o ,  (/)
>. )  ->  <. (/) ,  (/) >.  =  <. 2o ,  (/) >.
) )
5549, 54mtoi 665 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( G `  <. (/) ,  (/) >.
)  =  ( G `
 <. 2o ,  (/) >.
) )
5655ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  ( G `  <. (/) ,  (/) >.
)  =  ( G `
 <. 2o ,  (/) >.
) )
57 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  ( G `  <. (/) ,  (/) >.
)  =  (/) )
5857eqeq1d 2202 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  (
( G `  <. (/)
,  (/) >. )  =  ( G `  <. 2o ,  (/)
>. )  <->  (/)  =  ( G `
 <. 2o ,  (/) >.
) ) )
5956, 58mtbid 673 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  (/)  =  ( G `  <. 2o ,  (/) >. )
)
60 eqcom 2195 . . . . . . . . 9  |-  ( (/)  =  ( G `  <. 2o ,  (/) >. )  <->  ( G `  <. 2o ,  (/)
>. )  =  (/) )
6159, 60sylnib 677 . . . . . . . 8  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  ( G `  <. 2o ,  (/)
>. )  =  (/) )
62 1onn 6573 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  om
63 peano1 4626 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  om
64 peano4 4629 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1o  e.  om  /\  (/) 
e.  om )  ->  ( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
6562, 63, 64mp2an 426 . . . . . . . . . . . . . . . . 17  |-  ( suc 
1o  =  suc  (/)  <->  1o  =  (/) )
6626, 65nemtbir 2453 . . . . . . . . . . . . . . . 16  |-  -.  suc  1o  =  suc  (/)
67 df-2o 6470 . . . . . . . . . . . . . . . . 17  |-  2o  =  suc  1o
68 df-1o 6469 . . . . . . . . . . . . . . . . 17  |-  1o  =  suc  (/)
6967, 68eqeq12i 2207 . . . . . . . . . . . . . . . 16  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
7066, 69mtbir 672 . . . . . . . . . . . . . . 15  |-  -.  2o  =  1o
7170neir 2367 . . . . . . . . . . . . . 14  |-  2o  =/=  1o
7271nesymi 2410 . . . . . . . . . . . . 13  |-  -.  1o  =  2o
7328, 29opth1 4265 . . . . . . . . . . . . 13  |-  ( <. 1o ,  (/) >.  =  <. 2o ,  (/) >.  ->  1o  =  2o )
7472, 73mto 663 . . . . . . . . . . . 12  |-  -.  <. 1o ,  (/) >.  =  <. 2o ,  (/) >.
75 f1veqaeq 5812 . . . . . . . . . . . . 13  |-  ( ( G : T -1-1-> ~P 1o  /\  ( <. 1o ,  (/)
>.  e.  T  /\  <. 2o ,  (/) >.  e.  T
) )  ->  (
( G `  <. 1o ,  (/) >. )  =  ( G `  <. 2o ,  (/)
>. )  ->  <. 1o ,  (/)
>.  =  <. 2o ,  (/)
>. ) )
761, 17, 52, 75syl12anc 1247 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  (
( G `  <. 1o ,  (/) >. )  =  ( G `  <. 2o ,  (/)
>. )  ->  <. 1o ,  (/)
>.  =  <. 2o ,  (/)
>. ) )
7774, 76mtoi 665 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( G `  <. 1o ,  (/)
>. )  =  ( G `  <. 2o ,  (/)
>. ) )
7877ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  ( G `  <. 1o ,  (/)
>. )  =  ( G `  <. 2o ,  (/)
>. ) )
79 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )
8079eqeq1d 2202 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  (
( G `  <. 1o ,  (/) >. )  =  ( G `  <. 2o ,  (/)
>. )  <->  { (/) }  =  ( G `  <. 2o ,  (/)
>. ) ) )
8178, 80mtbid 673 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  {
(/) }  =  ( G `  <. 2o ,  (/)
>. ) )
82 eqcom 2195 . . . . . . . . 9  |-  ( {
(/) }  =  ( G `  <. 2o ,  (/)
>. )  <->  ( G `  <. 2o ,  (/) >. )  =  { (/) } )
8381, 82sylnib 677 . . . . . . . 8  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} )
8461, 83jca 306 . . . . . . 7  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  ( -.  ( G `  <. 2o ,  (/) >. )  =  (/)  /\ 
-.  ( G `  <. 2o ,  (/) >. )  =  { (/) } ) )
853, 52ffvelcdmd 5694 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. 2o ,  (/)
>. )  e.  ~P 1o )
8685elpwid 3612 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. 2o ,  (/)
>. )  C_  1o )
8786, 20sseqtrdi 3227 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. 2o ,  (/)
>. )  C_  { (/) } )
88 pwtrufal 15488 . . . . . . . . . 10  |-  ( ( G `  <. 2o ,  (/)
>. )  C_  { (/) }  ->  -.  -.  (
( G `  <. 2o ,  (/) >. )  =  (/)  \/  ( G `  <. 2o ,  (/) >. )  =  { (/)
} ) )
8987, 88syl 14 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  -.  ( ( G `  <. 2o ,  (/) >. )  =  (/)  \/  ( G `
 <. 2o ,  (/) >.
)  =  { (/) } ) )
90 ioran 753 . . . . . . . . 9  |-  ( -.  ( ( G `  <. 2o ,  (/) >. )  =  (/)  \/  ( G `
 <. 2o ,  (/) >.
)  =  { (/) } )  <->  ( -.  ( G `  <. 2o ,  (/)
>. )  =  (/)  /\  -.  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} ) )
9189, 90sylnib 677 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( -.  ( G `  <. 2o ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} ) )
9291ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  /\  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )  ->  -.  ( -.  ( G `  <. 2o ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} ) )
9384, 92pm2.65da 662 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 1o ,  (/) >. )  =  { (/)
} )
9445, 93jca 306 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  (/) )  -> 
( -.  ( G `
 <. 1o ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} ) )
9525, 94mtand 666 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( G `  <. (/) ,  (/) >.
)  =  (/) )
96 eqcom 2195 . . . . . . . . . . 11  |-  ( ( G `  <. 1o ,  (/)
>. )  =  ( G `  <. 2o ,  (/)
>. )  <->  ( G `  <. 2o ,  (/) >. )  =  ( G `  <. 1o ,  (/) >. )
)
9777, 96sylnib 677 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( G `  <. 2o ,  (/)
>. )  =  ( G `  <. 1o ,  (/)
>. ) )
9897ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 2o ,  (/) >. )  =  ( G `  <. 1o ,  (/)
>. ) )
99 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  -> 
( G `  <. 1o ,  (/) >. )  =  (/) )
10099eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  -> 
( ( G `  <. 2o ,  (/) >. )  =  ( G `  <. 1o ,  (/) >. )  <->  ( G `  <. 2o ,  (/)
>. )  =  (/) ) )
10198, 100mtbid 673 . . . . . . . 8  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 2o ,  (/) >. )  =  (/) )
10255ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. (/)
,  (/) >. )  =  ( G `  <. 2o ,  (/)
>. ) )
103 eqcom 2195 . . . . . . . . . 10  |-  ( ( G `  <. (/) ,  (/) >.
)  =  ( G `
 <. 2o ,  (/) >.
)  <->  ( G `  <. 2o ,  (/) >. )  =  ( G `  <.
(/) ,  (/) >. )
)
104102, 103sylnib 677 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 2o ,  (/) >. )  =  ( G `  <. (/) ,  (/) >.
) )
105 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  -> 
( G `  <. (/)
,  (/) >. )  =  { (/)
} )
106105eqeq2d 2205 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  -> 
( ( G `  <. 2o ,  (/) >. )  =  ( G `  <.
(/) ,  (/) >. )  <->  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} ) )
107104, 106mtbid 673 . . . . . . . 8  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  ->  -.  ( G `  <. 2o ,  (/) >. )  =  { (/)
} )
108101, 107jca 306 . . . . . . 7  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  -> 
( -.  ( G `
 <. 2o ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} ) )
10991ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  /\  ( G `
 <. 1o ,  (/) >.
)  =  (/) )  ->  -.  ( -.  ( G `
 <. 2o ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. 2o ,  (/)
>. )  =  { (/)
} ) )
110108, 109pm2.65da 662 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  ->  -.  ( G `  <. 1o ,  (/)
>. )  =  (/) )
11141adantr 276 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  ->  -.  ( G `  <. 1o ,  (/)
>. )  =  ( G `  <. (/) ,  (/) >.
) )
112 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  ->  ( G `  <. (/) ,  (/) >. )  =  { (/) } )
113112eqeq2d 2205 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  ->  ( ( G `  <. 1o ,  (/)
>. )  =  ( G `  <. (/) ,  (/) >.
)  <->  ( G `  <. 1o ,  (/) >. )  =  { (/) } ) )
114111, 113mtbid 673 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  ->  -.  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} )
115110, 114jca 306 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  /\  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )  ->  ( -.  ( G `  <. 1o ,  (/)
>. )  =  (/)  /\  -.  ( G `  <. 1o ,  (/)
>. )  =  { (/)
} ) )
11625, 115mtand 666 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( G `  <. (/) ,  (/) >.
)  =  { (/) } )
11795, 116jca 306 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( -.  ( G `  <. (/)
,  (/) >. )  =  (/)  /\ 
-.  ( G `  <.
(/) ,  (/) >. )  =  { (/) } ) )
1183, 38ffvelcdmd 5694 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. (/) ,  (/) >.
)  e.  ~P 1o )
119118elpwid 3612 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. (/) ,  (/) >.
)  C_  1o )
120119, 20sseqtrdi 3227 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  ( G `  <. (/) ,  (/) >.
)  C_  { (/) } )
121 pwtrufal 15488 . . . . 5  |-  ( ( G `  <. (/) ,  (/) >.
)  C_  { (/) }  ->  -. 
-.  ( ( G `
 <. (/) ,  (/) >. )  =  (/)  \/  ( G `
 <. (/) ,  (/) >. )  =  { (/) } ) )
122120, 121syl 14 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  -.  ( ( G `  <.
(/) ,  (/) >. )  =  (/)  \/  ( G `
 <. (/) ,  (/) >. )  =  { (/) } ) )
123 ioran 753 . . . 4  |-  ( -.  ( ( G `  <.
(/) ,  (/) >. )  =  (/)  \/  ( G `
 <. (/) ,  (/) >. )  =  { (/) } )  <->  ( -.  ( G `  <. (/) ,  (/) >.
)  =  (/)  /\  -.  ( G `  <. (/) ,  (/) >.
)  =  { (/) } ) )
124122, 123sylnib 677 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  2o  e.  N )  ->  -.  ( -.  ( G `  <. (/) ,  (/) >. )  =  (/)  /\  -.  ( G `  <. (/) ,  (/) >.
)  =  { (/) } ) )
125117, 124pm2.65da 662 . 2  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  -.  2o  e.  N )
126 2onn 6574 . . . 4  |-  2o  e.  om
127 nntri1 6549 . . . 4  |-  ( ( N  e.  om  /\  2o  e.  om )  -> 
( N  C_  2o  <->  -.  2o  e.  N ) )
128126, 127mpan2 425 . . 3  |-  ( N  e.  om  ->  ( N  C_  2o  <->  -.  2o  e.  N ) )
129128adantr 276 . 2  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( N  C_  2o 
<->  -.  2o  e.  N
) )
130125, 129mpbird 167 1  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  N  C_  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    C_ wss 3153   (/)c0 3446   ~Pcpw 3601   {csn 3618   <.cop 3621   U_ciun 3912   Oncon0 4394   suc csuc 4396   omcom 4622    X. cxp 4657   -->wf 5250   -1-1->wf1 5251   ` cfv 5254   1oc1o 6462   2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-1o 6469  df-2o 6470
This theorem is referenced by:  pwf1oexmid  15490
  Copyright terms: Public domain W3C validator