ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nex Unicode version

Theorem nex 1459
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
nex.1  |-  -.  ph
Assertion
Ref Expression
nex  |-  -.  E. x ph

Proof of Theorem nex
StepHypRef Expression
1 alnex 1458 . 2  |-  ( A. x  -.  ph  <->  -.  E. x ph )
2 nex.1 . 2  |-  -.  ph
31, 2mpgbi 1411 1  |-  -.  E. x ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   E.wex 1451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-5 1406  ax-gen 1408  ax-ie2 1453
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320
This theorem is referenced by:  ru  2877  0nelxp  4527  0xp  4579  dm0  4713  co02  5010  0fv  5410  mpo0  5795  0npr  7239
  Copyright terms: Public domain W3C validator