ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nex Unicode version

Theorem nex 1523
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
nex.1  |-  -.  ph
Assertion
Ref Expression
nex  |-  -.  E. x ph

Proof of Theorem nex
StepHypRef Expression
1 alnex 1522 . 2  |-  ( A. x  -.  ph  <->  -.  E. x ph )
2 nex.1 . 2  |-  -.  ph
31, 2mpgbi 1475 1  |-  -.  E. x ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie2 1517
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379
This theorem is referenced by:  ru  2997  0nelxp  4703  0xp  4755  dm0  4892  co02  5196  0fv  5612  mpo0  6015  0npr  7596  0g0  13208  gsum0g  13228
  Copyright terms: Public domain W3C validator