ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelxp Unicode version

Theorem 0nelxp 4632
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp  |-  -.  (/)  e.  ( A  X.  B )

Proof of Theorem 0nelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . 6  |-  x  e. 
_V
2 vex 2729 . . . . . 6  |-  y  e. 
_V
31, 2opnzi 4213 . . . . 5  |-  <. x ,  y >.  =/=  (/)
4 simpl 108 . . . . . . 7  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  (/)  =  <. x ,  y >. )
54eqcomd 2171 . . . . . 6  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  <. x ,  y >.  =  (/) )
65necon3ai 2385 . . . . 5  |-  ( <.
x ,  y >.  =/=  (/)  ->  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) ) )
73, 6ax-mp 5 . . . 4  |-  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
87nex 1488 . . 3  |-  -.  E. y ( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)
98nex 1488 . 2  |-  -.  E. x E. y ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
10 elxp 4621 . 2  |-  ( (/)  e.  ( A  X.  B
)  <->  E. x E. y
( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
119, 10mtbir 661 1  |-  -.  (/)  e.  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136    =/= wne 2336   (/)c0 3409   <.cop 3579    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610
This theorem is referenced by:  0nelrel  4650  dmsn0  5071  nfunv  5221  reldmtpos  6221  dmtpos  6224  0ncn  7772  structcnvcnv  12410
  Copyright terms: Public domain W3C validator