| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nelxp | Unicode version | ||
| Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0nelxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . . 6
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | 1, 2 | opnzi 4297 |
. . . . 5
|
| 4 | simpl 109 |
. . . . . . 7
| |
| 5 | 4 | eqcomd 2213 |
. . . . . 6
|
| 6 | 5 | necon3ai 2427 |
. . . . 5
|
| 7 | 3, 6 | ax-mp 5 |
. . . 4
|
| 8 | 7 | nex 1524 |
. . 3
|
| 9 | 8 | nex 1524 |
. 2
|
| 10 | elxp 4710 |
. 2
| |
| 11 | 9, 10 | mtbir 673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: 0nelrel 4739 dmsn0 5169 nfunv 5323 reldmtpos 6362 dmtpos 6365 0ncn 7979 structcnvcnv 12963 vtxval0 15765 iedgval0 15766 |
| Copyright terms: Public domain | W3C validator |