ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelxp Unicode version

Theorem 0nelxp 4691
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp  |-  -.  (/)  e.  ( A  X.  B )

Proof of Theorem 0nelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . 6  |-  x  e. 
_V
2 vex 2766 . . . . . 6  |-  y  e. 
_V
31, 2opnzi 4268 . . . . 5  |-  <. x ,  y >.  =/=  (/)
4 simpl 109 . . . . . . 7  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  (/)  =  <. x ,  y >. )
54eqcomd 2202 . . . . . 6  |-  ( (
(/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  <. x ,  y >.  =  (/) )
65necon3ai 2416 . . . . 5  |-  ( <.
x ,  y >.  =/=  (/)  ->  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) ) )
73, 6ax-mp 5 . . . 4  |-  -.  ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
87nex 1514 . . 3  |-  -.  E. y ( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)
98nex 1514 . 2  |-  -.  E. x E. y ( (/)  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )
10 elxp 4680 . 2  |-  ( (/)  e.  ( A  X.  B
)  <->  E. x E. y
( (/)  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
119, 10mtbir 672 1  |-  -.  (/)  e.  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   (/)c0 3450   <.cop 3625    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669
This theorem is referenced by:  0nelrel  4709  dmsn0  5137  nfunv  5291  reldmtpos  6311  dmtpos  6314  0ncn  7898  structcnvcnv  12694
  Copyright terms: Public domain W3C validator