ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ru Unicode version

Theorem ru 2954
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 
A  e.  _V, asserted that any collection of sets  A is a set i.e. belongs to the universe 
_V of all sets. In particular, by substituting  { x  |  x  e/  x } (the "Russell class") for  A, it asserted  { x  |  x  e/  x }  e.  _V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove  { x  |  x  e/  x }  e/  _V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that  A is a set only when it is smaller than some other set  B. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4107. (Contributed by NM, 7-Aug-1994.)

Assertion
Ref Expression
ru  |-  { x  |  x  e/  x }  e/  _V

Proof of Theorem ru
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pm5.19 701 . . . . . 6  |-  -.  (
y  e.  y  <->  -.  y  e.  y )
2 eleq1 2233 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  y  <->  y  e.  y ) )
3 df-nel 2436 . . . . . . . . 9  |-  ( x  e/  x  <->  -.  x  e.  x )
4 id 19 . . . . . . . . . . 11  |-  ( x  =  y  ->  x  =  y )
54, 4eleq12d 2241 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  y ) )
65notbid 662 . . . . . . . . 9  |-  ( x  =  y  ->  ( -.  x  e.  x  <->  -.  y  e.  y ) )
73, 6syl5bb 191 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e/  x  <->  -.  y  e.  y ) )
82, 7bibi12d 234 . . . . . . 7  |-  ( x  =  y  ->  (
( x  e.  y  <-> 
x  e/  x )  <->  ( y  e.  y  <->  -.  y  e.  y ) ) )
98spv 1853 . . . . . 6  |-  ( A. x ( x  e.  y  <->  x  e/  x
)  ->  ( y  e.  y  <->  -.  y  e.  y ) )
101, 9mto 657 . . . . 5  |-  -.  A. x ( x  e.  y  <->  x  e/  x
)
11 abeq2 2279 . . . . 5  |-  ( y  =  { x  |  x  e/  x }  <->  A. x ( x  e.  y  <->  x  e/  x
) )
1210, 11mtbir 666 . . . 4  |-  -.  y  =  { x  |  x  e/  x }
1312nex 1493 . . 3  |-  -.  E. y  y  =  {
x  |  x  e/  x }
14 isset 2736 . . 3  |-  ( { x  |  x  e/  x }  e.  _V  <->  E. y  y  =  {
x  |  x  e/  x } )
1513, 14mtbir 666 . 2  |-  -.  {
x  |  x  e/  x }  e.  _V
16 df-nel 2436 . 2  |-  ( { x  |  x  e/  x }  e/  _V  <->  -.  { x  |  x  e/  x }  e.  _V )
1715, 16mpbir 145 1  |-  { x  |  x  e/  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156    e/ wnel 2435   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nel 2436  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator