ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv Unicode version

Theorem 0fv 5665
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv  |-  ( (/) `  A )  =  (/)

Proof of Theorem 0fv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fv 5326 . 2  |-  ( (/) `  A )  =  ( iota x A (/) x )
2 noel 3495 . . . . . 6  |-  -.  <. A ,  x >.  e.  (/)
3 df-br 4084 . . . . . 6  |-  ( A
(/) x  <->  <. A ,  x >.  e.  (/) )
42, 3mtbir 675 . . . . 5  |-  -.  A (/) x
54nex 1546 . . . 4  |-  -.  E. x  A (/) x
6 euex 2107 . . . 4  |-  ( E! x  A (/) x  ->  E. x  A (/) x )
75, 6mto 666 . . 3  |-  -.  E! x  A (/) x
8 iotanul 5294 . . 3  |-  ( -.  E! x  A (/) x  ->  ( iota x A (/) x )  =  (/) )
97, 8ax-mp 5 . 2  |-  ( iota
x A (/) x )  =  (/)
101, 9eqtri 2250 1  |-  ( (/) `  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395   E.wex 1538   E!weu 2077    e. wcel 2200   (/)c0 3491   <.cop 3669   class class class wbr 4083   iotacio 5276   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326
This theorem is referenced by:  fv2prc  5666  ccat1st1st  11172  strsl0  13081
  Copyright terms: Public domain W3C validator