Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0fv | Unicode version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5216 | . 2 | |
2 | noel 3424 | . . . . . 6 | |
3 | df-br 3999 | . . . . . 6 | |
4 | 2, 3 | mtbir 671 | . . . . 5 |
5 | 4 | nex 1498 | . . . 4 |
6 | euex 2054 | . . . 4 | |
7 | 5, 6 | mto 662 | . . 3 |
8 | iotanul 5185 | . . 3 | |
9 | 7, 8 | ax-mp 5 | . 2 |
10 | 1, 9 | eqtri 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wceq 1353 wex 1490 weu 2024 wcel 2146 c0 3420 cop 3592 class class class wbr 3998 cio 5168 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 |
This theorem is referenced by: strsl0 12477 |
Copyright terms: Public domain | W3C validator |