ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv Unicode version

Theorem 0fv 5521
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv  |-  ( (/) `  A )  =  (/)

Proof of Theorem 0fv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fv 5196 . 2  |-  ( (/) `  A )  =  ( iota x A (/) x )
2 noel 3413 . . . . . 6  |-  -.  <. A ,  x >.  e.  (/)
3 df-br 3983 . . . . . 6  |-  ( A
(/) x  <->  <. A ,  x >.  e.  (/) )
42, 3mtbir 661 . . . . 5  |-  -.  A (/) x
54nex 1488 . . . 4  |-  -.  E. x  A (/) x
6 euex 2044 . . . 4  |-  ( E! x  A (/) x  ->  E. x  A (/) x )
75, 6mto 652 . . 3  |-  -.  E! x  A (/) x
8 iotanul 5168 . . 3  |-  ( -.  E! x  A (/) x  ->  ( iota x A (/) x )  =  (/) )
97, 8ax-mp 5 . 2  |-  ( iota
x A (/) x )  =  (/)
101, 9eqtri 2186 1  |-  ( (/) `  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   (/)c0 3409   <.cop 3579   class class class wbr 3982   iotacio 5151   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  strsl0  12442
  Copyright terms: Public domain W3C validator