ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv Unicode version

Theorem 0fv 5635
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv  |-  ( (/) `  A )  =  (/)

Proof of Theorem 0fv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fv 5298 . 2  |-  ( (/) `  A )  =  ( iota x A (/) x )
2 noel 3472 . . . . . 6  |-  -.  <. A ,  x >.  e.  (/)
3 df-br 4060 . . . . . 6  |-  ( A
(/) x  <->  <. A ,  x >.  e.  (/) )
42, 3mtbir 673 . . . . 5  |-  -.  A (/) x
54nex 1524 . . . 4  |-  -.  E. x  A (/) x
6 euex 2085 . . . 4  |-  ( E! x  A (/) x  ->  E. x  A (/) x )
75, 6mto 664 . . 3  |-  -.  E! x  A (/) x
8 iotanul 5266 . . 3  |-  ( -.  E! x  A (/) x  ->  ( iota x A (/) x )  =  (/) )
97, 8ax-mp 5 . 2  |-  ( iota
x A (/) x )  =  (/)
101, 9eqtri 2228 1  |-  ( (/) `  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373   E.wex 1516   E!weu 2055    e. wcel 2178   (/)c0 3468   <.cop 3646   class class class wbr 4059   iotacio 5249   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298
This theorem is referenced by:  fv2prc  5636  ccat1st1st  11131  strsl0  12996
  Copyright terms: Public domain W3C validator