Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0fv | Unicode version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . 2 | |
2 | noel 3418 | . . . . . 6 | |
3 | df-br 3990 | . . . . . 6 | |
4 | 2, 3 | mtbir 666 | . . . . 5 |
5 | 4 | nex 1493 | . . . 4 |
6 | euex 2049 | . . . 4 | |
7 | 5, 6 | mto 657 | . . 3 |
8 | iotanul 5175 | . . 3 | |
9 | 7, 8 | ax-mp 5 | . 2 |
10 | 1, 9 | eqtri 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wceq 1348 wex 1485 weu 2019 wcel 2141 c0 3414 cop 3586 class class class wbr 3989 cio 5158 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 |
This theorem is referenced by: strsl0 12464 |
Copyright terms: Public domain | W3C validator |