ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv Unicode version

Theorem 0fv 5552
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv  |-  ( (/) `  A )  =  (/)

Proof of Theorem 0fv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fv 5226 . 2  |-  ( (/) `  A )  =  ( iota x A (/) x )
2 noel 3428 . . . . . 6  |-  -.  <. A ,  x >.  e.  (/)
3 df-br 4006 . . . . . 6  |-  ( A
(/) x  <->  <. A ,  x >.  e.  (/) )
42, 3mtbir 671 . . . . 5  |-  -.  A (/) x
54nex 1500 . . . 4  |-  -.  E. x  A (/) x
6 euex 2056 . . . 4  |-  ( E! x  A (/) x  ->  E. x  A (/) x )
75, 6mto 662 . . 3  |-  -.  E! x  A (/) x
8 iotanul 5195 . . 3  |-  ( -.  E! x  A (/) x  ->  ( iota x A (/) x )  =  (/) )
97, 8ax-mp 5 . 2  |-  ( iota
x A (/) x )  =  (/)
101, 9eqtri 2198 1  |-  ( (/) `  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   (/)c0 3424   <.cop 3597   class class class wbr 4005   iotacio 5178   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226
This theorem is referenced by:  strsl0  12513
  Copyright terms: Public domain W3C validator