ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv Unicode version

Theorem 0fv 5531
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv  |-  ( (/) `  A )  =  (/)

Proof of Theorem 0fv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fv 5206 . 2  |-  ( (/) `  A )  =  ( iota x A (/) x )
2 noel 3418 . . . . . 6  |-  -.  <. A ,  x >.  e.  (/)
3 df-br 3990 . . . . . 6  |-  ( A
(/) x  <->  <. A ,  x >.  e.  (/) )
42, 3mtbir 666 . . . . 5  |-  -.  A (/) x
54nex 1493 . . . 4  |-  -.  E. x  A (/) x
6 euex 2049 . . . 4  |-  ( E! x  A (/) x  ->  E. x  A (/) x )
75, 6mto 657 . . 3  |-  -.  E! x  A (/) x
8 iotanul 5175 . . 3  |-  ( -.  E! x  A (/) x  ->  ( iota x A (/) x )  =  (/) )
97, 8ax-mp 5 . 2  |-  ( iota
x A (/) x )  =  (/)
101, 9eqtri 2191 1  |-  ( (/) `  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1348   E.wex 1485   E!weu 2019    e. wcel 2141   (/)c0 3414   <.cop 3586   class class class wbr 3989   iotacio 5158   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206
This theorem is referenced by:  strsl0  12464
  Copyright terms: Public domain W3C validator