ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0g0 Unicode version

Theorem 0g0 12607
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0  |-  (/)  =  ( 0g `  (/) )

Proof of Theorem 0g0
Dummy variables  e  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4109 . . 3  |-  (/)  e.  _V
2 base0 12443 . . . 4  |-  (/)  =  (
Base `  (/) )
3 eqid 2165 . . . 4  |-  ( +g  `  (/) )  =  ( +g  `  (/) )
4 eqid 2165 . . . 4  |-  ( 0g
`  (/) )  =  ( 0g `  (/) )
52, 3, 4grpidvalg 12604 . . 3  |-  ( (/)  e.  _V  ->  ( 0g `  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) ) )
61, 5ax-mp 5 . 2  |-  ( 0g
`  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
7 noel 3413 . . . . . 6  |-  -.  e  e.  (/)
87intnanr 920 . . . . 5  |-  -.  (
e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
98nex 1488 . . . 4  |-  -.  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
10 euex 2044 . . . 4  |-  ( E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  ->  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
119, 10mto 652 . . 3  |-  -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
12 iotanul 5168 . . 3  |-  ( -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  -> 
( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/) )
1311, 12ax-mp 5 . 2  |-  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/)
146, 13eqtr2i 2187 1  |-  (/)  =  ( 0g `  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   A.wral 2444   _Vcvv 2726   (/)c0 3409   iotacio 5151   ` cfv 5188  (class class class)co 5842   +g cplusg 12457   0gc0g 12573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-riota 5798  df-ov 5845  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-0g 12575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator