ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0g0 Unicode version

Theorem 0g0 12661
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0  |-  (/)  =  ( 0g `  (/) )

Proof of Theorem 0g0
Dummy variables  e  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4125 . . 3  |-  (/)  e.  _V
2 base0 12478 . . . 4  |-  (/)  =  (
Base `  (/) )
3 eqid 2175 . . . 4  |-  ( +g  `  (/) )  =  ( +g  `  (/) )
4 eqid 2175 . . . 4  |-  ( 0g
`  (/) )  =  ( 0g `  (/) )
52, 3, 4grpidvalg 12658 . . 3  |-  ( (/)  e.  _V  ->  ( 0g `  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) ) )
61, 5ax-mp 5 . 2  |-  ( 0g
`  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
7 noel 3424 . . . . . 6  |-  -.  e  e.  (/)
87intnanr 930 . . . . 5  |-  -.  (
e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
98nex 1498 . . . 4  |-  -.  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
10 euex 2054 . . . 4  |-  ( E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  ->  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
119, 10mto 662 . . 3  |-  -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
12 iotanul 5185 . . 3  |-  ( -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  -> 
( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/) )
1311, 12ax-mp 5 . 2  |-  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/)
146, 13eqtr2i 2197 1  |-  (/)  =  ( 0g `  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1353   E.wex 1490   E!weu 2024    e. wcel 2146   A.wral 2453   _Vcvv 2735   (/)c0 3420   iotacio 5168   ` cfv 5208  (class class class)co 5865   +g cplusg 12493   0gc0g 12627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8893  df-ndx 12432  df-slot 12433  df-base 12435  df-0g 12629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator