ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0g0 Unicode version

Theorem 0g0 13283
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0  |-  (/)  =  ( 0g `  (/) )

Proof of Theorem 0g0
Dummy variables  e  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4179 . . 3  |-  (/)  e.  _V
2 base0 12957 . . . 4  |-  (/)  =  (
Base `  (/) )
3 eqid 2206 . . . 4  |-  ( +g  `  (/) )  =  ( +g  `  (/) )
4 eqid 2206 . . . 4  |-  ( 0g
`  (/) )  =  ( 0g `  (/) )
52, 3, 4grpidvalg 13280 . . 3  |-  ( (/)  e.  _V  ->  ( 0g `  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) ) )
61, 5ax-mp 5 . 2  |-  ( 0g
`  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
7 noel 3468 . . . . . 6  |-  -.  e  e.  (/)
87intnanr 932 . . . . 5  |-  -.  (
e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
98nex 1524 . . . 4  |-  -.  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
10 euex 2085 . . . 4  |-  ( E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  ->  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
119, 10mto 664 . . 3  |-  -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
12 iotanul 5256 . . 3  |-  ( -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  -> 
( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/) )
1311, 12ax-mp 5 . 2  |-  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/)
146, 13eqtr2i 2228 1  |-  (/)  =  ( 0g `  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373   E.wex 1516   E!weu 2055    e. wcel 2177   A.wral 2485   _Vcvv 2773   (/)c0 3464   iotacio 5239   ` cfv 5280  (class class class)co 5957   +g cplusg 12984   0gc0g 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-0g 13165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator