ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0g0 Unicode version

Theorem 0g0 13404
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0  |-  (/)  =  ( 0g `  (/) )

Proof of Theorem 0g0
Dummy variables  e  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4210 . . 3  |-  (/)  e.  _V
2 base0 13077 . . . 4  |-  (/)  =  (
Base `  (/) )
3 eqid 2229 . . . 4  |-  ( +g  `  (/) )  =  ( +g  `  (/) )
4 eqid 2229 . . . 4  |-  ( 0g
`  (/) )  =  ( 0g `  (/) )
52, 3, 4grpidvalg 13401 . . 3  |-  ( (/)  e.  _V  ->  ( 0g `  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) ) )
61, 5ax-mp 5 . 2  |-  ( 0g
`  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
7 noel 3495 . . . . . 6  |-  -.  e  e.  (/)
87intnanr 935 . . . . 5  |-  -.  (
e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
98nex 1546 . . . 4  |-  -.  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
10 euex 2107 . . . 4  |-  ( E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  ->  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
119, 10mto 666 . . 3  |-  -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
12 iotanul 5293 . . 3  |-  ( -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  -> 
( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/) )
1311, 12ax-mp 5 . 2  |-  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/)
146, 13eqtr2i 2251 1  |-  (/)  =  ( 0g `  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1395   E.wex 1538   E!weu 2077    e. wcel 2200   A.wral 2508   _Vcvv 2799   (/)c0 3491   iotacio 5275   ` cfv 5317  (class class class)co 6000   +g cplusg 13105   0gc0g 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator