ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npr Unicode version

Theorem 0npr 7424
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.)
Assertion
Ref Expression
0npr  |-  -.  (/)  e.  P.

Proof of Theorem 0npr
StepHypRef Expression
1 noel 3413 . . . . . 6  |-  -.  x  e.  (/)
2 1st0 6112 . . . . . . 7  |-  ( 1st `  (/) )  =  (/)
32eleq2i 2233 . . . . . 6  |-  ( x  e.  ( 1st `  (/) )  <->  x  e.  (/) )
41, 3mtbir 661 . . . . 5  |-  -.  x  e.  ( 1st `  (/) )
54nex 1488 . . . 4  |-  -.  E. x  x  e.  ( 1st `  (/) )
6 rexex 2512 . . . 4  |-  ( E. x  e.  Q.  x  e.  ( 1st `  (/) )  ->  E. x  x  e.  ( 1st `  (/) ) )
75, 6mto 652 . . 3  |-  -.  E. x  e.  Q.  x  e.  ( 1st `  (/) )
8 prml 7418 . . 3  |-  ( <.
( 1st `  (/) ) ,  ( 2nd `  (/) ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  (/) ) )
97, 8mto 652 . 2  |-  -.  <. ( 1st `  (/) ) ,  ( 2nd `  (/) ) >.  e.  P.
10 prop 7416 . 2  |-  ( (/)  e.  P.  ->  <. ( 1st `  (/) ) ,  ( 2nd `  (/) ) >.  e.  P. )
119, 10mto 652 1  |-  -.  (/)  e.  P.
Colors of variables: wff set class
Syntax hints:   -. wn 3   E.wex 1480    e. wcel 2136   E.wrex 2445   (/)c0 3409   <.cop 3579   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-qs 6507  df-ni 7245  df-nqqs 7289  df-inp 7407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator