ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpo0 Unicode version

Theorem mpo0 5947
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
mpo0  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)

Proof of Theorem mpo0
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 5882 . 2  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) }
2 df-oprab 5881 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) ) }
3 noel 3428 . . . . . . 7  |-  -.  x  e.  (/)
4 simprll 537 . . . . . . 7  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )  ->  x  e.  (/) )
53, 4mto 662 . . . . . 6  |-  -.  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
65nex 1500 . . . . 5  |-  -.  E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
76nex 1500 . . . 4  |-  -.  E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
87nex 1500 . . 3  |-  -.  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  (
( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
98abf 3468 . 2  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) ) }  =  (/)
101, 2, 93eqtri 2202 1  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   (/)c0 3424   <.cop 3597   {coprab 5878    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-oprab 5881  df-mpo 5882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator