Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpo0 | Unicode version |
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
mpo0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 5870 | . 2 | |
2 | df-oprab 5869 | . 2 | |
3 | noel 3424 | . . . . . . 7 | |
4 | simprll 537 | . . . . . . 7 | |
5 | 3, 4 | mto 662 | . . . . . 6 |
6 | 5 | nex 1498 | . . . . 5 |
7 | 6 | nex 1498 | . . . 4 |
8 | 7 | nex 1498 | . . 3 |
9 | 8 | abf 3464 | . 2 |
10 | 1, 2, 9 | 3eqtri 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wex 1490 wcel 2146 cab 2161 c0 3420 cop 3592 coprab 5866 cmpo 5867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 df-oprab 5869 df-mpo 5870 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |