Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpo0 | Unicode version |
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
mpo0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 5847 | . 2 | |
2 | df-oprab 5846 | . 2 | |
3 | noel 3413 | . . . . . . 7 | |
4 | simprll 527 | . . . . . . 7 | |
5 | 3, 4 | mto 652 | . . . . . 6 |
6 | 5 | nex 1488 | . . . . 5 |
7 | 6 | nex 1488 | . . . 4 |
8 | 7 | nex 1488 | . . 3 |
9 | 8 | abf 3452 | . 2 |
10 | 1, 2, 9 | 3eqtri 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 c0 3409 cop 3579 coprab 5843 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |