ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 Unicode version

Theorem co02 5242
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02  |-  ( A  o.  (/) )  =  (/)

Proof of Theorem co02
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5227 . 2  |-  Rel  ( A  o.  (/) )
2 rel0 4844 . 2  |-  Rel  (/)
3 noel 3495 . . . . . . 7  |-  -.  <. x ,  z >.  e.  (/)
4 df-br 4084 . . . . . . 7  |-  ( x
(/) z  <->  <. x ,  z >.  e.  (/) )
53, 4mtbir 675 . . . . . 6  |-  -.  x (/) z
65intnanr 935 . . . . 5  |-  -.  (
x (/) z  /\  z A y )
76nex 1546 . . . 4  |-  -.  E. z ( x (/) z  /\  z A y )
8 vex 2802 . . . . 5  |-  x  e. 
_V
9 vex 2802 . . . . 5  |-  y  e. 
_V
108, 9opelco 4894 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  E. z
( x (/) z  /\  z A y ) )
117, 10mtbir 675 . . 3  |-  -.  <. x ,  y >.  e.  ( A  o.  (/) )
12 noel 3495 . . 3  |-  -.  <. x ,  y >.  e.  (/)
1311, 122false 706 . 2  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  <. x ,  y >.  e.  (/) )
141, 2, 13eqrelriiv 4813 1  |-  ( A  o.  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   <.cop 3669   class class class wbr 4083    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-co 4728
This theorem is referenced by:  co01  5243  gsumwmhm  13531
  Copyright terms: Public domain W3C validator