ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 Unicode version

Theorem co02 4931
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02  |-  ( A  o.  (/) )  =  (/)

Proof of Theorem co02
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 4916 . 2  |-  Rel  ( A  o.  (/) )
2 rel0 4550 . 2  |-  Rel  (/)
3 noel 3288 . . . . . . 7  |-  -.  <. x ,  z >.  e.  (/)
4 df-br 3838 . . . . . . 7  |-  ( x
(/) z  <->  <. x ,  z >.  e.  (/) )
53, 4mtbir 631 . . . . . 6  |-  -.  x (/) z
65intnanr 877 . . . . 5  |-  -.  (
x (/) z  /\  z A y )
76nex 1434 . . . 4  |-  -.  E. z ( x (/) z  /\  z A y )
8 vex 2622 . . . . 5  |-  x  e. 
_V
9 vex 2622 . . . . 5  |-  y  e. 
_V
108, 9opelco 4596 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  E. z
( x (/) z  /\  z A y ) )
117, 10mtbir 631 . . 3  |-  -.  <. x ,  y >.  e.  ( A  o.  (/) )
12 noel 3288 . . 3  |-  -.  <. x ,  y >.  e.  (/)
1311, 122false 652 . 2  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  <. x ,  y >.  e.  (/) )
141, 2, 13eqrelriiv 4520 1  |-  ( A  o.  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   (/)c0 3284   <.cop 3444   class class class wbr 3837    o. ccom 4432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-co 4437
This theorem is referenced by:  co01  4932
  Copyright terms: Public domain W3C validator