Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > co02 | Unicode version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5119 | . 2 | |
2 | rel0 4745 | . 2 | |
3 | noel 3424 | . . . . . . 7 | |
4 | df-br 3999 | . . . . . . 7 | |
5 | 3, 4 | mtbir 671 | . . . . . 6 |
6 | 5 | intnanr 930 | . . . . 5 |
7 | 6 | nex 1498 | . . . 4 |
8 | vex 2738 | . . . . 5 | |
9 | vex 2738 | . . . . 5 | |
10 | 8, 9 | opelco 4792 | . . . 4 |
11 | 7, 10 | mtbir 671 | . . 3 |
12 | noel 3424 | . . 3 | |
13 | 11, 12 | 2false 701 | . 2 |
14 | 1, 2, 13 | eqrelriiv 4714 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wex 1490 wcel 2146 c0 3420 cop 3592 class class class wbr 3998 ccom 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-co 4629 |
This theorem is referenced by: co01 5135 |
Copyright terms: Public domain | W3C validator |