| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > co02 | Unicode version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 5169 |
. 2
| |
| 2 | rel0 4789 |
. 2
| |
| 3 | noel 3455 |
. . . . . . 7
| |
| 4 | df-br 4035 |
. . . . . . 7
| |
| 5 | 3, 4 | mtbir 672 |
. . . . . 6
|
| 6 | 5 | intnanr 931 |
. . . . 5
|
| 7 | 6 | nex 1514 |
. . . 4
|
| 8 | vex 2766 |
. . . . 5
| |
| 9 | vex 2766 |
. . . . 5
| |
| 10 | 8, 9 | opelco 4839 |
. . . 4
|
| 11 | 7, 10 | mtbir 672 |
. . 3
|
| 12 | noel 3455 |
. . 3
| |
| 13 | 11, 12 | 2false 702 |
. 2
|
| 14 | 1, 2, 13 | eqrelriiv 4758 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-co 4673 |
| This theorem is referenced by: co01 5185 gsumwmhm 13200 |
| Copyright terms: Public domain | W3C validator |