ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 Unicode version

Theorem co02 5117
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02  |-  ( A  o.  (/) )  =  (/)

Proof of Theorem co02
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5102 . 2  |-  Rel  ( A  o.  (/) )
2 rel0 4729 . 2  |-  Rel  (/)
3 noel 3413 . . . . . . 7  |-  -.  <. x ,  z >.  e.  (/)
4 df-br 3983 . . . . . . 7  |-  ( x
(/) z  <->  <. x ,  z >.  e.  (/) )
53, 4mtbir 661 . . . . . 6  |-  -.  x (/) z
65intnanr 920 . . . . 5  |-  -.  (
x (/) z  /\  z A y )
76nex 1488 . . . 4  |-  -.  E. z ( x (/) z  /\  z A y )
8 vex 2729 . . . . 5  |-  x  e. 
_V
9 vex 2729 . . . . 5  |-  y  e. 
_V
108, 9opelco 4776 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  E. z
( x (/) z  /\  z A y ) )
117, 10mtbir 661 . . 3  |-  -.  <. x ,  y >.  e.  ( A  o.  (/) )
12 noel 3413 . . 3  |-  -.  <. x ,  y >.  e.  (/)
1311, 122false 691 . 2  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  <. x ,  y >.  e.  (/) )
141, 2, 13eqrelriiv 4698 1  |-  ( A  o.  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   (/)c0 3409   <.cop 3579   class class class wbr 3982    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-co 4613
This theorem is referenced by:  co01  5118
  Copyright terms: Public domain W3C validator