| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0 | Unicode version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3510 |
. 2
| |
| 2 | noel 3495 |
. . . 4
| |
| 3 | 2 | nex 1546 |
. . 3
|
| 4 | vex 2802 |
. . . 4
| |
| 5 | 4 | eldm2 4921 |
. . 3
|
| 6 | 3, 5 | mtbir 675 |
. 2
|
| 7 | 1, 6 | mpgbir 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: rn0 4980 sqxpeq0 5152 fn0 5443 f0dom0 5519 f10d 5607 f1o00 5608 rdg0 6533 frec0g 6543 swrd0g 11192 ennnfonelemj0 12972 ennnfonelem1 12978 ennnfonelemkh 12983 ennnfonelemhf1o 12984 uhgr0e 15882 uhgr0 15885 |
| Copyright terms: Public domain | W3C validator |