| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0 | Unicode version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3479 |
. 2
| |
| 2 | noel 3464 |
. . . 4
| |
| 3 | 2 | nex 1523 |
. . 3
|
| 4 | vex 2775 |
. . . 4
| |
| 5 | 4 | eldm2 4876 |
. . 3
|
| 6 | 3, 5 | mtbir 673 |
. 2
|
| 7 | 1, 6 | mpgbir 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: rn0 4934 sqxpeq0 5106 fn0 5395 f0dom0 5469 f1o00 5557 rdg0 6473 frec0g 6483 swrd0g 11113 ennnfonelemj0 12772 ennnfonelem1 12778 ennnfonelemkh 12783 ennnfonelemhf1o 12784 |
| Copyright terms: Public domain | W3C validator |