| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0 | Unicode version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3470 |
. 2
| |
| 2 | noel 3455 |
. . . 4
| |
| 3 | 2 | nex 1514 |
. . 3
|
| 4 | vex 2766 |
. . . 4
| |
| 5 | 4 | eldm2 4865 |
. . 3
|
| 6 | 3, 5 | mtbir 672 |
. 2
|
| 7 | 1, 6 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: rn0 4923 sqxpeq0 5094 fn0 5380 f0dom0 5454 f1o00 5542 rdg0 6454 frec0g 6464 ennnfonelemj0 12643 ennnfonelem1 12649 ennnfonelemkh 12654 ennnfonelemhf1o 12655 |
| Copyright terms: Public domain | W3C validator |