ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 Unicode version

Theorem dm0 4892
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0  |-  dom  (/)  =  (/)

Proof of Theorem dm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3479 . 2  |-  ( dom  (/)  =  (/)  <->  A. x  -.  x  e.  dom  (/) )
2 noel 3464 . . . 4  |-  -.  <. x ,  y >.  e.  (/)
32nex 1523 . . 3  |-  -.  E. y <. x ,  y
>.  e.  (/)
4 vex 2775 . . . 4  |-  x  e. 
_V
54eldm2 4876 . . 3  |-  ( x  e.  dom  (/)  <->  E. y <. x ,  y >.  e.  (/) )
63, 5mtbir 673 . 2  |-  -.  x  e.  dom  (/)
71, 6mpgbir 1476 1  |-  dom  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373   E.wex 1515    e. wcel 2176   (/)c0 3460   <.cop 3636   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-dm 4685
This theorem is referenced by:  rn0  4934  sqxpeq0  5106  fn0  5395  f0dom0  5469  f1o00  5557  rdg0  6473  frec0g  6483  swrd0g  11113  ennnfonelemj0  12772  ennnfonelem1  12778  ennnfonelemkh  12783  ennnfonelemhf1o  12784
  Copyright terms: Public domain W3C validator