ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 Unicode version

Theorem dm0 4937
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0  |-  dom  (/)  =  (/)

Proof of Theorem dm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3510 . 2  |-  ( dom  (/)  =  (/)  <->  A. x  -.  x  e.  dom  (/) )
2 noel 3495 . . . 4  |-  -.  <. x ,  y >.  e.  (/)
32nex 1546 . . 3  |-  -.  E. y <. x ,  y
>.  e.  (/)
4 vex 2802 . . . 4  |-  x  e. 
_V
54eldm2 4921 . . 3  |-  ( x  e.  dom  (/)  <->  E. y <. x ,  y >.  e.  (/) )
63, 5mtbir 675 . 2  |-  -.  x  e.  dom  (/)
71, 6mpgbir 1499 1  |-  dom  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   <.cop 3669   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by:  rn0  4980  sqxpeq0  5152  fn0  5443  f0dom0  5519  f10d  5607  f1o00  5608  rdg0  6533  frec0g  6543  swrd0g  11192  ennnfonelemj0  12972  ennnfonelem1  12978  ennnfonelemkh  12983  ennnfonelemhf1o  12984  uhgr0e  15882  uhgr0  15885
  Copyright terms: Public domain W3C validator