| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0 | Unicode version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3487 |
. 2
| |
| 2 | noel 3472 |
. . . 4
| |
| 3 | 2 | nex 1524 |
. . 3
|
| 4 | vex 2779 |
. . . 4
| |
| 5 | 4 | eldm2 4895 |
. . 3
|
| 6 | 3, 5 | mtbir 673 |
. 2
|
| 7 | 1, 6 | mpgbir 1477 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: rn0 4953 sqxpeq0 5125 fn0 5415 f0dom0 5491 f10d 5579 f1o00 5580 rdg0 6496 frec0g 6506 swrd0g 11151 ennnfonelemj0 12887 ennnfonelem1 12893 ennnfonelemkh 12898 ennnfonelemhf1o 12899 uhgr0e 15793 uhgr0 15796 |
| Copyright terms: Public domain | W3C validator |