ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 Unicode version

Theorem dm0 4911
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0  |-  dom  (/)  =  (/)

Proof of Theorem dm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3487 . 2  |-  ( dom  (/)  =  (/)  <->  A. x  -.  x  e.  dom  (/) )
2 noel 3472 . . . 4  |-  -.  <. x ,  y >.  e.  (/)
32nex 1524 . . 3  |-  -.  E. y <. x ,  y
>.  e.  (/)
4 vex 2779 . . . 4  |-  x  e. 
_V
54eldm2 4895 . . 3  |-  ( x  e.  dom  (/)  <->  E. y <. x ,  y >.  e.  (/) )
63, 5mtbir 673 . 2  |-  -.  x  e.  dom  (/)
71, 6mpgbir 1477 1  |-  dom  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373   E.wex 1516    e. wcel 2178   (/)c0 3468   <.cop 3646   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-dm 4703
This theorem is referenced by:  rn0  4953  sqxpeq0  5125  fn0  5415  f0dom0  5491  f10d  5579  f1o00  5580  rdg0  6496  frec0g  6506  swrd0g  11151  ennnfonelemj0  12887  ennnfonelem1  12893  ennnfonelemkh  12898  ennnfonelemhf1o  12899  uhgr0e  15793  uhgr0  15796
  Copyright terms: Public domain W3C validator