ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xp Unicode version

Theorem 0xp 4773
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp  |-  ( (/)  X.  A )  =  (/)

Proof of Theorem 0xp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4710 . . 3  |-  ( z  e.  ( (/)  X.  A
)  <->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) ) )
2 noel 3472 . . . . . . 7  |-  -.  x  e.  (/)
3 simprl 529 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )  ->  x  e.  (/) )
42, 3mto 664 . . . . . 6  |-  -.  (
z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )
54nex 1524 . . . . 5  |-  -.  E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  (/)  /\  y  e.  A ) )
65nex 1524 . . . 4  |-  -.  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  (/)  /\  y  e.  A
) )
7 noel 3472 . . . 4  |-  -.  z  e.  (/)
86, 72false 703 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )  <->  z  e.  (/) )
91, 8bitri 184 . 2  |-  ( z  e.  ( (/)  X.  A
)  <->  z  e.  (/) )
109eqriv 2204 1  |-  ( (/)  X.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   (/)c0 3468   <.cop 3646    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699
This theorem is referenced by:  res0  4982  xp0  5121  xpeq0r  5124  xpdisj1  5126  xpima1  5148  xpfi  7055  exmidfodomrlemim  7340  hashxp  11008
  Copyright terms: Public domain W3C validator