ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xp Unicode version

Theorem 0xp 4589
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp  |-  ( (/)  X.  A )  =  (/)

Proof of Theorem 0xp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4526 . . 3  |-  ( z  e.  ( (/)  X.  A
)  <->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) ) )
2 noel 3337 . . . . . . 7  |-  -.  x  e.  (/)
3 simprl 505 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )  ->  x  e.  (/) )
42, 3mto 636 . . . . . 6  |-  -.  (
z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )
54nex 1461 . . . . 5  |-  -.  E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  (/)  /\  y  e.  A ) )
65nex 1461 . . . 4  |-  -.  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  (/)  /\  y  e.  A
) )
7 noel 3337 . . . 4  |-  -.  z  e.  (/)
86, 72false 675 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )  <->  z  e.  (/) )
91, 8bitri 183 . 2  |-  ( z  e.  ( (/)  X.  A
)  <->  z  e.  (/) )
109eqriv 2114 1  |-  ( (/)  X.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1316   E.wex 1453    e. wcel 1465   (/)c0 3333   <.cop 3500    X. cxp 4507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-opab 3960  df-xp 4515
This theorem is referenced by:  res0  4793  xp0  4928  xpeq0r  4931  xpdisj1  4933  xpima1  4955  xpfi  6786  exmidfodomrlemim  7025  hashxp  10540
  Copyright terms: Public domain W3C validator