| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xp | Unicode version | ||
| Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| 0xp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4692 |
. . 3
| |
| 2 | noel 3464 |
. . . . . . 7
| |
| 3 | simprl 529 |
. . . . . . 7
| |
| 4 | 2, 3 | mto 664 |
. . . . . 6
|
| 5 | 4 | nex 1523 |
. . . . 5
|
| 6 | 5 | nex 1523 |
. . . 4
|
| 7 | noel 3464 |
. . . 4
| |
| 8 | 6, 7 | 2false 703 |
. . 3
|
| 9 | 1, 8 | bitri 184 |
. 2
|
| 10 | 9 | eqriv 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: res0 4963 xp0 5102 xpeq0r 5105 xpdisj1 5107 xpima1 5129 xpfi 7029 exmidfodomrlemim 7309 hashxp 10971 |
| Copyright terms: Public domain | W3C validator |