ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra2xy Unicode version

Theorem nfra2xy 2550
Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
Assertion
Ref Expression
nfra2xy  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem nfra2xy
StepHypRef Expression
1 nfcv 2350 . 2  |-  F/_ y A
2 nfra1 2539 . 2  |-  F/ y A. y  e.  B  ph
31, 2nfralxy 2546 1  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1484   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  invdisj  4052  reusv3  4525
  Copyright terms: Public domain W3C validator