ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra2xy Unicode version

Theorem nfra2xy 2499
Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
Assertion
Ref Expression
nfra2xy  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem nfra2xy
StepHypRef Expression
1 nfcv 2299 . 2  |-  F/_ y A
2 nfra1 2488 . 2  |-  F/ y A. y  e.  B  ph
31, 2nfralxy 2495 1  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1440   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440
This theorem is referenced by:  invdisj  3959  reusv3  4418
  Copyright terms: Public domain W3C validator