ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra2xy Unicode version

Theorem nfra2xy 2536
Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
Assertion
Ref Expression
nfra2xy  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem nfra2xy
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ y A
2 nfra1 2525 . 2  |-  F/ y A. y  e.  B  ph
31, 2nfralxy 2532 1  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1471   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477
This theorem is referenced by:  invdisj  4023  reusv3  4491
  Copyright terms: Public domain W3C validator