Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra2xy GIF version

Theorem nfra2xy 2475
 Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
Assertion
Ref Expression
nfra2xy 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2xy
StepHypRef Expression
1 nfcv 2281 . 2 𝑦𝐴
2 nfra1 2466 . 2 𝑦𝑦𝐵 𝜑
31, 2nfralxy 2471 1 𝑦𝑥𝐴𝑦𝐵 𝜑
 Colors of variables: wff set class Syntax hints:  Ⅎwnf 1436  ∀wral 2416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-17 1506  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421 This theorem is referenced by:  invdisj  3923  reusv3  4381
 Copyright terms: Public domain W3C validator