| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfra2xy | GIF version | ||
| Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| nfra2xy | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfra1 2538 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
| 3 | 1, 2 | nfralxy 2545 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 |
| This theorem is referenced by: invdisj 4044 reusv3 4515 |
| Copyright terms: Public domain | W3C validator |