| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfra2xy | GIF version | ||
| Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| nfra2xy | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfra1 2528 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
| 3 | 1, 2 | nfralxy 2535 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: invdisj 4028 reusv3 4496 |
| Copyright terms: Public domain | W3C validator |