Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfra2xy | GIF version |
Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.) |
Ref | Expression |
---|---|
nfra2xy | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2306 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfra1 2495 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfralxy 2502 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1447 ∀wral 2442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-4 1497 ax-17 1513 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 |
This theorem is referenced by: invdisj 3971 reusv3 4433 |
Copyright terms: Public domain | W3C validator |