ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra2xy GIF version

Theorem nfra2xy 2529
Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
Assertion
Ref Expression
nfra2xy 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2xy
StepHypRef Expression
1 nfcv 2329 . 2 𝑦𝐴
2 nfra1 2518 . 2 𝑦𝑦𝐵 𝜑
31, 2nfralxy 2525 1 𝑦𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1470  wral 2465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470
This theorem is referenced by:  invdisj  4009  reusv3  4472
  Copyright terms: Public domain W3C validator