| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfra2xy | GIF version | ||
| Description: Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| nfra2xy | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfra1 2536 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
| 3 | 1, 2 | nfralxy 2543 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1482 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 |
| This theorem is referenced by: invdisj 4037 reusv3 4506 |
| Copyright terms: Public domain | W3C validator |