ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 Unicode version

Theorem nfre1 2549
Description:  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1  |-  F/ x E. x  e.  A  ph

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2490 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 nfe1 1519 . 2  |-  F/ x E. x ( x  e.  A  /\  ph )
31, 2nfxfr 1497 1  |-  F/ x E. x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1483   E.wex 1515    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-rex 2490
This theorem is referenced by:  r19.29an  2648  nfiu1  3957  fun11iun  5543  eusvobj2  5930  fodjuomnilemdc  7246  ismkvnex  7257  prarloclem3step  7609  prmuloc2  7680  ltexprlemm  7713  caucvgprprlemaddq  7821  caucvgsrlemgt1  7908  axpre-suploclemres  8014  supinfneg  9716  infsupneg  9717  lbzbi  9737  divalglemeunn  12232  divalglemeuneg  12234  bezoutlemmain  12319  bezout  12332  lss1d  14145  pw1nct  15944  isomninnlem  15973  trirec0  15987  ismkvnnlem  15995
  Copyright terms: Public domain W3C validator