ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 Unicode version

Theorem nfre1 2549
Description:  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1  |-  F/ x E. x  e.  A  ph

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2490 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 nfe1 1519 . 2  |-  F/ x E. x ( x  e.  A  /\  ph )
31, 2nfxfr 1497 1  |-  F/ x E. x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1483   E.wex 1515    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-rex 2490
This theorem is referenced by:  r19.29an  2648  nfiu1  3957  fun11iun  5545  eusvobj2  5932  fodjuomnilemdc  7248  ismkvnex  7259  prarloclem3step  7611  prmuloc2  7682  ltexprlemm  7715  caucvgprprlemaddq  7823  caucvgsrlemgt1  7910  axpre-suploclemres  8016  supinfneg  9718  infsupneg  9719  lbzbi  9739  divalglemeunn  12265  divalglemeuneg  12267  bezoutlemmain  12352  bezout  12365  lss1d  14178  pw1nct  15977  isomninnlem  16006  trirec0  16020  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator