ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 Unicode version

Theorem nfre1 2573
Description:  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1  |-  F/ x E. x  e.  A  ph

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2514 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 nfe1 1542 . 2  |-  F/ x E. x ( x  e.  A  /\  ph )
31, 2nfxfr 1520 1  |-  F/ x E. x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1506   E.wex 1538    e. wcel 2200   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-rex 2514
This theorem is referenced by:  r19.29an  2673  nfiu1  3995  fun11iun  5593  eusvobj2  5987  fodjuomnilemdc  7311  ismkvnex  7322  prarloclem3step  7683  prmuloc2  7754  ltexprlemm  7787  caucvgprprlemaddq  7895  caucvgsrlemgt1  7982  axpre-suploclemres  8088  supinfneg  9790  infsupneg  9791  lbzbi  9811  divalglemeunn  12432  divalglemeuneg  12434  bezoutlemmain  12519  bezout  12532  lss1d  14347  pw1nct  16369  isomninnlem  16398  trirec0  16412  ismkvnnlem  16420
  Copyright terms: Public domain W3C validator