ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 Unicode version

Theorem nfre1 2537
Description:  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1  |-  F/ x E. x  e.  A  ph

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2478 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 nfe1 1507 . 2  |-  F/ x E. x ( x  e.  A  /\  ph )
31, 2nfxfr 1485 1  |-  F/ x E. x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1471   E.wex 1503    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-rex 2478
This theorem is referenced by:  r19.29an  2636  nfiu1  3943  fun11iun  5522  eusvobj2  5905  fodjuomnilemdc  7205  ismkvnex  7216  prarloclem3step  7558  prmuloc2  7629  ltexprlemm  7662  caucvgprprlemaddq  7770  caucvgsrlemgt1  7857  axpre-suploclemres  7963  supinfneg  9663  infsupneg  9664  lbzbi  9684  divalglemeunn  12065  divalglemeuneg  12067  bezoutlemmain  12138  bezout  12151  lss1d  13882  pw1nct  15563  isomninnlem  15590  trirec0  15604  ismkvnnlem  15612
  Copyright terms: Public domain W3C validator