Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrexya | Unicode version |
Description: Not-free for restricted existential quantification where and are distinct. See nfrexxy 2496 for a version with and distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.) |
Ref | Expression |
---|---|
nfralya.1 | |
nfralya.2 |
Ref | Expression |
---|---|
nfrexya |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1446 | . . 3 | |
2 | nfralya.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | nfralya.2 | . . . 4 | |
5 | 4 | a1i 9 | . . 3 |
6 | 1, 3, 5 | nfrexdya 2493 | . 2 |
7 | 6 | mptru 1344 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1336 wnf 1440 wnfc 2286 wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 |
This theorem is referenced by: nfiunya 3877 nffrec 6343 nfsup 6936 caucvgsrlemgt1 7715 nfsum1 11253 zsupcllemstep 11832 bezout 11895 |
Copyright terms: Public domain | W3C validator |