ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexya Unicode version

Theorem nfrexya 2535
Description: Not-free for restricted existential quantification where  y and  A are distinct. See nfrexw 2533 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1  |-  F/_ x A
nfralya.2  |-  F/ x ph
Assertion
Ref Expression
nfrexya  |-  F/ x E. y  e.  A  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfrexya
StepHypRef Expression
1 nftru 1477 . . 3  |-  F/ y T.
2 nfralya.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralya.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfrexdya 2530 . 2  |-  ( T. 
->  F/ x E. y  e.  A  ph )
76mptru 1373 1  |-  F/ x E. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   F/wnf 1471   F/_wnfc 2323   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478
This theorem is referenced by:  nfiunya  3940  nffrec  6449  nfsup  7051  caucvgsrlemgt1  7855  nfsum1  11499  zsupcllemstep  12082  bezout  12148
  Copyright terms: Public domain W3C validator