ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcd Unicode version

Theorem nfsbcd 3018
Description: Deduction version of nfsbc 3019. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbcd.1  |-  F/ y
ph
nfsbcd.2  |-  ( ph  -> 
F/_ x A )
nfsbcd.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfsbcd  |-  ( ph  ->  F/ x [. A  /  y ]. ps )

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 2999 . 2  |-  ( [. A  /  y ]. ps  <->  A  e.  { y  |  ps } )
2 nfsbcd.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfsbcd.1 . . . 4  |-  F/ y
ph
4 nfsbcd.3 . . . 4  |-  ( ph  ->  F/ x ps )
53, 4nfabd 2368 . . 3  |-  ( ph  -> 
F/_ x { y  |  ps } )
62, 5nfeld 2364 . 2  |-  ( ph  ->  F/ x  A  e. 
{ y  |  ps } )
71, 6nfxfrd 1498 1  |-  ( ph  ->  F/ x [. A  /  y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1483    e. wcel 2176   {cab 2191   F/_wnfc 2335   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-sbc 2999
This theorem is referenced by:  nfsbc  3019  nfcsbd  3129  sbcnestgf  3145
  Copyright terms: Public domain W3C validator