ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcd Unicode version

Theorem nfsbcd 3009
Description: Deduction version of nfsbc 3010. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbcd.1  |-  F/ y
ph
nfsbcd.2  |-  ( ph  -> 
F/_ x A )
nfsbcd.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfsbcd  |-  ( ph  ->  F/ x [. A  /  y ]. ps )

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 2990 . 2  |-  ( [. A  /  y ]. ps  <->  A  e.  { y  |  ps } )
2 nfsbcd.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfsbcd.1 . . . 4  |-  F/ y
ph
4 nfsbcd.3 . . . 4  |-  ( ph  ->  F/ x ps )
53, 4nfabd 2359 . . 3  |-  ( ph  -> 
F/_ x { y  |  ps } )
62, 5nfeld 2355 . 2  |-  ( ph  ->  F/ x  A  e. 
{ y  |  ps } )
71, 6nfxfrd 1489 1  |-  ( ph  ->  F/ x [. A  /  y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1474    e. wcel 2167   {cab 2182   F/_wnfc 2326   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-sbc 2990
This theorem is referenced by:  nfsbc  3010  nfcsbd  3120  sbcnestgf  3136
  Copyright terms: Public domain W3C validator