Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcd Unicode version

Theorem nfsbcd 2929
 Description: Deduction version of nfsbc 2930. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbcd.1
nfsbcd.2
nfsbcd.3
Assertion
Ref Expression
nfsbcd

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 2911 . 2
2 nfsbcd.2 . . 3
3 nfsbcd.1 . . . 4
4 nfsbcd.3 . . . 4
53, 4nfabd 2301 . . 3
62, 5nfeld 2298 . 2
71, 6nfxfrd 1452 1
 Colors of variables: wff set class Syntax hints:   wi 4  wnf 1437   wcel 1481  cab 2126  wnfc 2269  wsbc 2910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-sbc 2911 This theorem is referenced by:  nfsbc  2930  nfcsbd  3037  sbcnestgf  3052
 Copyright terms: Public domain W3C validator