ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcd GIF version

Theorem nfsbcd 3048
Description: Deduction version of nfsbc 3049. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbcd.1 𝑦𝜑
nfsbcd.2 (𝜑𝑥𝐴)
nfsbcd.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcd (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 3029 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcd.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcd.1 . . . 4 𝑦𝜑
4 nfsbcd.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabd 2392 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2388 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1521 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1506  wcel 2200  {cab 2215  wnfc 2359  [wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-sbc 3029
This theorem is referenced by:  nfsbc  3049  nfcsbd  3160  sbcnestgf  3176
  Copyright terms: Public domain W3C validator