ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcd GIF version

Theorem nfsbcd 3005
Description: Deduction version of nfsbc 3006. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbcd.1 𝑦𝜑
nfsbcd.2 (𝜑𝑥𝐴)
nfsbcd.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcd (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 2986 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcd.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcd.1 . . . 4 𝑦𝜑
4 nfsbcd.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabd 2356 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2352 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1486 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1471  wcel 2164  {cab 2179  wnfc 2323  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-sbc 2986
This theorem is referenced by:  nfsbc  3006  nfcsbd  3116  sbcnestgf  3132
  Copyright terms: Public domain W3C validator