ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc Unicode version

Theorem nfsbc 3026
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbc.1  |-  F/_ x A
nfsbc.2  |-  F/ x ph
Assertion
Ref Expression
nfsbc  |-  F/ x [. A  /  y ]. ph

Proof of Theorem nfsbc
StepHypRef Expression
1 nftru 1490 . . 3  |-  F/ y T.
2 nfsbc.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfsbc.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfsbcd 3025 . 2  |-  ( T. 
->  F/ x [. A  /  y ]. ph )
76mptru 1382 1  |-  F/ x [. A  /  y ]. ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1374   F/wnf 1484   F/_wnfc 2337   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-sbc 3006
This theorem is referenced by:  cbvralcsf  3164  cbvrexcsf  3165  opelopabf  4339  ralrnmpt  5745  rexrnmpt  5746  uchoice  6246  dfopab2  6298  dfoprab3s  6299  mpoxopoveq  6349
  Copyright terms: Public domain W3C validator