ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc Unicode version

Theorem nfsbc 3018
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbc.1  |-  F/_ x A
nfsbc.2  |-  F/ x ph
Assertion
Ref Expression
nfsbc  |-  F/ x [. A  /  y ]. ph

Proof of Theorem nfsbc
StepHypRef Expression
1 nftru 1488 . . 3  |-  F/ y T.
2 nfsbc.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfsbc.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfsbcd 3017 . 2  |-  ( T. 
->  F/ x [. A  /  y ]. ph )
76mptru 1381 1  |-  F/ x [. A  /  y ]. ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1373   F/wnf 1482   F/_wnfc 2334   [.wsbc 2997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-sbc 2998
This theorem is referenced by:  cbvralcsf  3155  cbvrexcsf  3156  opelopabf  4320  ralrnmpt  5721  rexrnmpt  5722  uchoice  6222  dfopab2  6274  dfoprab3s  6275  mpoxopoveq  6325
  Copyright terms: Public domain W3C validator