ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc Unicode version

Theorem nfsbc 2971
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfsbc.1  |-  F/_ x A
nfsbc.2  |-  F/ x ph
Assertion
Ref Expression
nfsbc  |-  F/ x [. A  /  y ]. ph

Proof of Theorem nfsbc
StepHypRef Expression
1 nftru 1454 . . 3  |-  F/ y T.
2 nfsbc.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfsbc.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfsbcd 2970 . 2  |-  ( T. 
->  F/ x [. A  /  y ]. ph )
76mptru 1352 1  |-  F/ x [. A  /  y ]. ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1344   F/wnf 1448   F/_wnfc 2295   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-sbc 2952
This theorem is referenced by:  cbvralcsf  3107  cbvrexcsf  3108  opelopabf  4252  ralrnmpt  5627  rexrnmpt  5628  dfopab2  6157  dfoprab3s  6158  mpoxopoveq  6208
  Copyright terms: Public domain W3C validator