ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsbd Unicode version

Theorem nfcsbd 3129
Description: Deduction version of nfcsb 3131. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1  |-  F/ y
ph
nfcsbd.2  |-  ( ph  -> 
F/_ x A )
nfcsbd.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfcsbd  |-  ( ph  -> 
F/_ x [_ A  /  y ]_ B
)

Proof of Theorem nfcsbd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3094 . 2  |-  [_ A  /  y ]_ B  =  { z  |  [. A  /  y ]. z  e.  B }
2 nfv 1551 . . 3  |-  F/ z
ph
3 nfcsbd.1 . . . 4  |-  F/ y
ph
4 nfcsbd.2 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfcsbd.3 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2362 . . . 4  |-  ( ph  ->  F/ x  z  e.  B )
73, 4, 6nfsbcd 3018 . . 3  |-  ( ph  ->  F/ x [. A  /  y ]. z  e.  B )
82, 7nfabd 2368 . 2  |-  ( ph  -> 
F/_ x { z  |  [. A  / 
y ]. z  e.  B } )
91, 8nfcxfrd 2346 1  |-  ( ph  -> 
F/_ x [_ A  /  y ]_ B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1483    e. wcel 2176   {cab 2191   F/_wnfc 2335   [.wsbc 2998   [_csb 3093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-sbc 2999  df-csb 3094
This theorem is referenced by:  nfcsb  3131
  Copyright terms: Public domain W3C validator