Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcnestgf | Unicode version |
Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcnestgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2957 | . . . . 5 | |
2 | csbeq1 3052 | . . . . . 6 | |
3 | dfsbcq 2957 | . . . . . 6 | |
4 | 2, 3 | syl 14 | . . . . 5 |
5 | 1, 4 | bibi12d 234 | . . . 4 |
6 | 5 | imbi2d 229 | . . 3 |
7 | vex 2733 | . . . . 5 | |
8 | 7 | a1i 9 | . . . 4 |
9 | csbeq1a 3058 | . . . . . 6 | |
10 | dfsbcq 2957 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 11 | adantl 275 | . . . 4 |
13 | nfnf1 1537 | . . . . 5 | |
14 | 13 | nfal 1569 | . . . 4 |
15 | nfa1 1534 | . . . . 5 | |
16 | nfcsb1v 3082 | . . . . . 6 | |
17 | 16 | a1i 9 | . . . . 5 |
18 | sp 1504 | . . . . 5 | |
19 | 15, 17, 18 | nfsbcd 2974 | . . . 4 |
20 | 8, 12, 14, 19 | sbciedf 2990 | . . 3 |
21 | 6, 20 | vtoclg 2790 | . 2 |
22 | 21 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wnf 1453 wcel 2141 wnfc 2299 cvv 2730 wsbc 2955 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbnestgf 3101 sbcnestg 3102 |
Copyright terms: Public domain | W3C validator |