| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcnestgf | Unicode version | ||
| Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.) |
| Ref | Expression |
|---|---|
| sbcnestgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2991 |
. . . . 5
| |
| 2 | csbeq1 3087 |
. . . . . 6
| |
| 3 | dfsbcq 2991 |
. . . . . 6
| |
| 4 | 2, 3 | syl 14 |
. . . . 5
|
| 5 | 1, 4 | bibi12d 235 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | vex 2766 |
. . . . 5
| |
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | csbeq1a 3093 |
. . . . . 6
| |
| 10 | dfsbcq 2991 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | nfnf1 1558 |
. . . . 5
| |
| 14 | 13 | nfal 1590 |
. . . 4
|
| 15 | nfa1 1555 |
. . . . 5
| |
| 16 | nfcsb1v 3117 |
. . . . . 6
| |
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | sp 1525 |
. . . . 5
| |
| 19 | 15, 17, 18 | nfsbcd 3009 |
. . . 4
|
| 20 | 8, 12, 14, 19 | sbciedf 3025 |
. . 3
|
| 21 | 6, 20 | vtoclg 2824 |
. 2
|
| 22 | 21 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbnestgf 3137 sbcnestg 3138 |
| Copyright terms: Public domain | W3C validator |