ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnestgf Unicode version

Theorem sbcnestgf 3123
Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestgf  |-  ( ( A  e.  V  /\  A. y F/ x ph )  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. ph ) )

Proof of Theorem sbcnestgf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2979 . . . . 5  |-  ( z  =  A  ->  ( [. z  /  x ]. [. B  /  y ]. ph  <->  [. A  /  x ]. [. B  /  y ]. ph ) )
2 csbeq1 3075 . . . . . 6  |-  ( z  =  A  ->  [_ z  /  x ]_ B  = 
[_ A  /  x ]_ B )
3 dfsbcq 2979 . . . . . 6  |-  ( [_ z  /  x ]_ B  =  [_ A  /  x ]_ B  ->  ( [. [_ z  /  x ]_ B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. ph ) )
42, 3syl 14 . . . . 5  |-  ( z  =  A  ->  ( [. [_ z  /  x ]_ B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
51, 4bibi12d 235 . . . 4  |-  ( z  =  A  ->  (
( [. z  /  x ]. [. B  /  y ]. ph  <->  [. [_ z  /  x ]_ B  /  y ]. ph )  <->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. ph ) ) )
65imbi2d 230 . . 3  |-  ( z  =  A  ->  (
( A. y F/ x ph  ->  ( [. z  /  x ]. [. B  /  y ]. ph  <->  [. [_ z  /  x ]_ B  /  y ]. ph ) )  <->  ( A. y F/ x ph  ->  (
[. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) ) ) )
7 vex 2755 . . . . 5  |-  z  e. 
_V
87a1i 9 . . . 4  |-  ( A. y F/ x ph  ->  z  e.  _V )
9 csbeq1a 3081 . . . . . 6  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
10 dfsbcq 2979 . . . . . 6  |-  ( B  =  [_ z  /  x ]_ B  ->  ( [. B  /  y ]. ph  <->  [. [_ z  /  x ]_ B  /  y ]. ph ) )
119, 10syl 14 . . . . 5  |-  ( x  =  z  ->  ( [. B  /  y ]. ph  <->  [. [_ z  /  x ]_ B  /  y ]. ph ) )
1211adantl 277 . . . 4  |-  ( ( A. y F/ x ph  /\  x  =  z )  ->  ( [. B  /  y ]. ph  <->  [. [_ z  /  x ]_ B  / 
y ]. ph ) )
13 nfnf1 1555 . . . . 5  |-  F/ x F/ x ph
1413nfal 1587 . . . 4  |-  F/ x A. y F/ x ph
15 nfa1 1552 . . . . 5  |-  F/ y A. y F/ x ph
16 nfcsb1v 3105 . . . . . 6  |-  F/_ x [_ z  /  x ]_ B
1716a1i 9 . . . . 5  |-  ( A. y F/ x ph  ->  F/_ x [_ z  /  x ]_ B )
18 sp 1522 . . . . 5  |-  ( A. y F/ x ph  ->  F/ x ph )
1915, 17, 18nfsbcd 2997 . . . 4  |-  ( A. y F/ x ph  ->  F/ x [. [_ z  /  x ]_ B  / 
y ]. ph )
208, 12, 14, 19sbciedf 3013 . . 3  |-  ( A. y F/ x ph  ->  (
[. z  /  x ]. [. B  /  y ]. ph  <->  [. [_ z  /  x ]_ B  /  y ]. ph ) )
216, 20vtoclg 2812 . 2  |-  ( A  e.  V  ->  ( A. y F/ x ph  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. ph ) ) )
2221imp 124 1  |-  ( ( A  e.  V  /\  A. y F/ x ph )  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   F/wnf 1471    e. wcel 2160   F/_wnfc 2319   _Vcvv 2752   [.wsbc 2977   [_csb 3072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-sbc 2978  df-csb 3073
This theorem is referenced by:  csbnestgf  3124  sbcnestg  3125
  Copyright terms: Public domain W3C validator