Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcnestgf | Unicode version |
Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcnestgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2962 | . . . . 5 | |
2 | csbeq1 3058 | . . . . . 6 | |
3 | dfsbcq 2962 | . . . . . 6 | |
4 | 2, 3 | syl 14 | . . . . 5 |
5 | 1, 4 | bibi12d 235 | . . . 4 |
6 | 5 | imbi2d 230 | . . 3 |
7 | vex 2738 | . . . . 5 | |
8 | 7 | a1i 9 | . . . 4 |
9 | csbeq1a 3064 | . . . . . 6 | |
10 | dfsbcq 2962 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 11 | adantl 277 | . . . 4 |
13 | nfnf1 1542 | . . . . 5 | |
14 | 13 | nfal 1574 | . . . 4 |
15 | nfa1 1539 | . . . . 5 | |
16 | nfcsb1v 3088 | . . . . . 6 | |
17 | 16 | a1i 9 | . . . . 5 |
18 | sp 1509 | . . . . 5 | |
19 | 15, 17, 18 | nfsbcd 2980 | . . . 4 |
20 | 8, 12, 14, 19 | sbciedf 2996 | . . 3 |
21 | 6, 20 | vtoclg 2795 | . 2 |
22 | 21 | imp 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wceq 1353 wnf 1458 wcel 2146 wnfc 2304 cvv 2735 wsbc 2960 csb 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-csb 3056 |
This theorem is referenced by: csbnestgf 3107 sbcnestg 3108 |
Copyright terms: Public domain | W3C validator |