Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0xnn0 Unicode version

Theorem nn0xnn0 9037
 Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0xnn0 NN0*

Proof of Theorem nn0xnn0
StepHypRef Expression
1 nn0ssxnn0 9036 . 2 NN0*
21sseli 3088 1 NN0*
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1480  cn0 8970  NN0*cxnn0 9033 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-xnn0 9034 This theorem is referenced by:  xnn0xadd0  9643  1tonninf  10206
 Copyright terms: Public domain W3C validator