| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1tonninf | Unicode version | ||
| Description: The mapping of one into ℕ∞ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g |
|
| fxnn0nninf.f |
|
| fxnn0nninf.i |
|
| Ref | Expression |
|---|---|
| 1tonninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i |
. . . . 5
| |
| 2 | 1 | fveq1i 5627 |
. . . 4
|
| 3 | 1nn0 9381 |
. . . . . 6
| |
| 4 | nn0xnn0 9432 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | nn0nepnf 9436 |
. . . . . . 7
| |
| 7 | 3, 6 | ax-mp 5 |
. . . . . 6
|
| 8 | 7 | necomi 2485 |
. . . . 5
|
| 9 | fvunsng 5832 |
. . . . 5
| |
| 10 | 5, 8, 9 | mp2an 426 |
. . . 4
|
| 11 | fxnn0nninf.g |
. . . . . . . 8
| |
| 12 | 11 | frechashgf1o 10645 |
. . . . . . 7
|
| 13 | f1ocnv 5584 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | f1of 5571 |
. . . . . 6
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
|
| 17 | fvco3 5704 |
. . . . 5
| |
| 18 | 16, 3, 17 | mp2an 426 |
. . . 4
|
| 19 | 2, 10, 18 | 3eqtri 2254 |
. . 3
|
| 20 | df-1o 6560 |
. . . . . . 7
| |
| 21 | 20 | fveq2i 5629 |
. . . . . 6
|
| 22 | 0zd 9454 |
. . . . . . . . 9
| |
| 23 | peano1 4685 |
. . . . . . . . . 10
| |
| 24 | 23 | a1i 9 |
. . . . . . . . 9
|
| 25 | 22, 11, 24 | frec2uzsucd 10618 |
. . . . . . . 8
|
| 26 | 25 | mptru 1404 |
. . . . . . 7
|
| 27 | 22, 11 | frec2uz0d 10616 |
. . . . . . . . 9
|
| 28 | 27 | mptru 1404 |
. . . . . . . 8
|
| 29 | 28 | oveq1i 6010 |
. . . . . . 7
|
| 30 | 26, 29 | eqtri 2250 |
. . . . . 6
|
| 31 | 0p1e1 9220 |
. . . . . 6
| |
| 32 | 21, 30, 31 | 3eqtri 2254 |
. . . . 5
|
| 33 | 1onn 6664 |
. . . . . 6
| |
| 34 | f1ocnvfv 5902 |
. . . . . 6
| |
| 35 | 12, 33, 34 | mp2an 426 |
. . . . 5
|
| 36 | 32, 35 | ax-mp 5 |
. . . 4
|
| 37 | 36 | fveq2i 5629 |
. . 3
|
| 38 | eleq2 2293 |
. . . . . . 7
| |
| 39 | 38 | ifbid 3624 |
. . . . . 6
|
| 40 | 39 | mpteq2dv 4174 |
. . . . 5
|
| 41 | fxnn0nninf.f |
. . . . 5
| |
| 42 | omex 4684 |
. . . . . 6
| |
| 43 | 42 | mptex 5864 |
. . . . 5
|
| 44 | 40, 41, 43 | fvmpt3i 5713 |
. . . 4
|
| 45 | 33, 44 | ax-mp 5 |
. . 3
|
| 46 | 19, 37, 45 | 3eqtri 2254 |
. 2
|
| 47 | el1o 6581 |
. . . 4
| |
| 48 | ifbi 3623 |
. . . 4
| |
| 49 | 47, 48 | ax-mp 5 |
. . 3
|
| 50 | 49 | mpteq2i 4170 |
. 2
|
| 51 | eqeq1 2236 |
. . . 4
| |
| 52 | 51 | ifbid 3624 |
. . 3
|
| 53 | 52 | cbvmptv 4179 |
. 2
|
| 54 | 46, 50, 53 | 3eqtri 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-1o 6560 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-xnn0 9429 df-z 9443 df-uz 9719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |