ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf Unicode version

Theorem 1tonninf 10206
Description: The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
1tonninf  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Distinct variable groups:    i, n    x, i
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5415 . . . 4  |-  ( I `
 1 )  =  ( ( ( F  o.  `' G )  u.  { <. +oo , 
( om  X.  { 1o } ) >. } ) `
 1 )
3 1nn0 8986 . . . . . 6  |-  1  e.  NN0
4 nn0xnn0 9037 . . . . . 6  |-  ( 1  e.  NN0  ->  1  e. NN0*
)
53, 4ax-mp 5 . . . . 5  |-  1  e. NN0*
6 nn0nepnf 9041 . . . . . . 7  |-  ( 1  e.  NN0  ->  1  =/= +oo )
73, 6ax-mp 5 . . . . . 6  |-  1  =/= +oo
87necomi 2391 . . . . 5  |- +oo  =/=  1
9 fvunsng 5607 . . . . 5  |-  ( ( 1  e. NN0*  /\ +oo  =/=  1 )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
) )
105, 8, 9mp2an 422 . . . 4  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
)
11 fxnn0nninf.g . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1211frechashgf1o 10194 . . . . . . 7  |-  G : om
-1-1-onto-> NN0
13 f1ocnv 5373 . . . . . . 7  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
1412, 13ax-mp 5 . . . . . 6  |-  `' G : NN0
-1-1-onto-> om
15 f1of 5360 . . . . . 6  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
1614, 15ax-mp 5 . . . . 5  |-  `' G : NN0 --> om
17 fvco3 5485 . . . . 5  |-  ( ( `' G : NN0 --> om  /\  1  e.  NN0 )  -> 
( ( F  o.  `' G ) `  1
)  =  ( F `
 ( `' G `  1 ) ) )
1816, 3, 17mp2an 422 . . . 4  |-  ( ( F  o.  `' G
) `  1 )  =  ( F `  ( `' G `  1 ) )
192, 10, 183eqtri 2162 . . 3  |-  ( I `
 1 )  =  ( F `  ( `' G `  1 ) )
20 df-1o 6306 . . . . . . 7  |-  1o  =  suc  (/)
2120fveq2i 5417 . . . . . 6  |-  ( G `
 1o )  =  ( G `  suc  (/) )
22 0zd 9059 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
23 peano1 4503 . . . . . . . . . 10  |-  (/)  e.  om
2423a1i 9 . . . . . . . . 9  |-  ( T. 
->  (/)  e.  om )
2522, 11, 24frec2uzsucd 10167 . . . . . . . 8  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
2625mptru 1340 . . . . . . 7  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
2722, 11frec2uz0d 10165 . . . . . . . . 9  |-  ( T. 
->  ( G `  (/) )  =  0 )
2827mptru 1340 . . . . . . . 8  |-  ( G `
 (/) )  =  0
2928oveq1i 5777 . . . . . . 7  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
3026, 29eqtri 2158 . . . . . 6  |-  ( G `
 suc  (/) )  =  ( 0  +  1 )
31 0p1e1 8827 . . . . . 6  |-  ( 0  +  1 )  =  1
3221, 30, 313eqtri 2162 . . . . 5  |-  ( G `
 1o )  =  1
33 1onn 6409 . . . . . 6  |-  1o  e.  om
34 f1ocnvfv 5673 . . . . . 6  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
3512, 33, 34mp2an 422 . . . . 5  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
3632, 35ax-mp 5 . . . 4  |-  ( `' G `  1 )  =  1o
3736fveq2i 5417 . . 3  |-  ( F `
 ( `' G `  1 ) )  =  ( F `  1o )
38 eleq2 2201 . . . . . . 7  |-  ( n  =  1o  ->  (
i  e.  n  <->  i  e.  1o ) )
3938ifbid 3488 . . . . . 6  |-  ( n  =  1o  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  1o ,  1o ,  (/) ) )
4039mpteq2dv 4014 . . . . 5  |-  ( n  =  1o  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
41 fxnn0nninf.f . . . . 5  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
42 omex 4502 . . . . . 6  |-  om  e.  _V
4342mptex 5639 . . . . 5  |-  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.  _V
4440, 41, 43fvmpt3i 5494 . . . 4  |-  ( 1o  e.  om  ->  ( F `  1o )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
4533, 44ax-mp 5 . . 3  |-  ( F `
 1o )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
4619, 37, 453eqtri 2162 . 2  |-  ( I `
 1 )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
47 el1o 6327 . . . 4  |-  ( i  e.  1o  <->  i  =  (/) )
48 ifbi 3487 . . . 4  |-  ( ( i  e.  1o  <->  i  =  (/) )  ->  if (
i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) ) )
4947, 48ax-mp 5 . . 3  |-  if ( i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) )
5049mpteq2i 4010 . 2  |-  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o ,  (/) ) )
51 eqeq1 2144 . . . 4  |-  ( i  =  x  ->  (
i  =  (/)  <->  x  =  (/) ) )
5251ifbid 3488 . . 3  |-  ( i  =  x  ->  if ( i  =  (/) ,  1o ,  (/) )  =  if ( x  =  (/) ,  1o ,  (/) ) )
5352cbvmptv 4019 . 2  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  (/) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
5446, 50, 533eqtri 2162 1  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331   T. wtru 1332    e. wcel 1480    =/= wne 2306    u. cun 3064   (/)c0 3358   ifcif 3469   {csn 3522   <.cop 3525    |-> cmpt 3984   suc csuc 4282   omcom 4499    X. cxp 4532   `'ccnv 4533    o. ccom 4538   -->wf 5114   -1-1-onto->wf1o 5117   ` cfv 5118  (class class class)co 5767  freccfrec 6280   1oc1o 6299   0cc0 7613   1c1 7614    + caddc 7616   +oocpnf 7790   NN0cn0 8970  NN0*cxnn0 9033   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-recs 6195  df-frec 6281  df-1o 6306  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-xnn0 9034  df-z 9048  df-uz 9320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator