| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1tonninf | Unicode version | ||
| Description: The mapping of one into ℕ∞ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g |
|
| fxnn0nninf.f |
|
| fxnn0nninf.i |
|
| Ref | Expression |
|---|---|
| 1tonninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i |
. . . . 5
| |
| 2 | 1 | fveq1i 5577 |
. . . 4
|
| 3 | 1nn0 9311 |
. . . . . 6
| |
| 4 | nn0xnn0 9362 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | nn0nepnf 9366 |
. . . . . . 7
| |
| 7 | 3, 6 | ax-mp 5 |
. . . . . 6
|
| 8 | 7 | necomi 2461 |
. . . . 5
|
| 9 | fvunsng 5778 |
. . . . 5
| |
| 10 | 5, 8, 9 | mp2an 426 |
. . . 4
|
| 11 | fxnn0nninf.g |
. . . . . . . 8
| |
| 12 | 11 | frechashgf1o 10573 |
. . . . . . 7
|
| 13 | f1ocnv 5535 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | f1of 5522 |
. . . . . 6
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
|
| 17 | fvco3 5650 |
. . . . 5
| |
| 18 | 16, 3, 17 | mp2an 426 |
. . . 4
|
| 19 | 2, 10, 18 | 3eqtri 2230 |
. . 3
|
| 20 | df-1o 6502 |
. . . . . . 7
| |
| 21 | 20 | fveq2i 5579 |
. . . . . 6
|
| 22 | 0zd 9384 |
. . . . . . . . 9
| |
| 23 | peano1 4642 |
. . . . . . . . . 10
| |
| 24 | 23 | a1i 9 |
. . . . . . . . 9
|
| 25 | 22, 11, 24 | frec2uzsucd 10546 |
. . . . . . . 8
|
| 26 | 25 | mptru 1382 |
. . . . . . 7
|
| 27 | 22, 11 | frec2uz0d 10544 |
. . . . . . . . 9
|
| 28 | 27 | mptru 1382 |
. . . . . . . 8
|
| 29 | 28 | oveq1i 5954 |
. . . . . . 7
|
| 30 | 26, 29 | eqtri 2226 |
. . . . . 6
|
| 31 | 0p1e1 9150 |
. . . . . 6
| |
| 32 | 21, 30, 31 | 3eqtri 2230 |
. . . . 5
|
| 33 | 1onn 6606 |
. . . . . 6
| |
| 34 | f1ocnvfv 5848 |
. . . . . 6
| |
| 35 | 12, 33, 34 | mp2an 426 |
. . . . 5
|
| 36 | 32, 35 | ax-mp 5 |
. . . 4
|
| 37 | 36 | fveq2i 5579 |
. . 3
|
| 38 | eleq2 2269 |
. . . . . . 7
| |
| 39 | 38 | ifbid 3592 |
. . . . . 6
|
| 40 | 39 | mpteq2dv 4135 |
. . . . 5
|
| 41 | fxnn0nninf.f |
. . . . 5
| |
| 42 | omex 4641 |
. . . . . 6
| |
| 43 | 42 | mptex 5810 |
. . . . 5
|
| 44 | 40, 41, 43 | fvmpt3i 5659 |
. . . 4
|
| 45 | 33, 44 | ax-mp 5 |
. . 3
|
| 46 | 19, 37, 45 | 3eqtri 2230 |
. 2
|
| 47 | el1o 6523 |
. . . 4
| |
| 48 | ifbi 3591 |
. . . 4
| |
| 49 | 47, 48 | ax-mp 5 |
. . 3
|
| 50 | 49 | mpteq2i 4131 |
. 2
|
| 51 | eqeq1 2212 |
. . . 4
| |
| 52 | 51 | ifbid 3592 |
. . 3
|
| 53 | 52 | cbvmptv 4140 |
. 2
|
| 54 | 46, 50, 53 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-1o 6502 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-xnn0 9359 df-z 9373 df-uz 9649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |