ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf Unicode version

Theorem 1tonninf 10426
Description: The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
1tonninf  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Distinct variable groups:    i, n    x, i
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5512 . . . 4  |-  ( I `
 1 )  =  ( ( ( F  o.  `' G )  u.  { <. +oo , 
( om  X.  { 1o } ) >. } ) `
 1 )
3 1nn0 9181 . . . . . 6  |-  1  e.  NN0
4 nn0xnn0 9232 . . . . . 6  |-  ( 1  e.  NN0  ->  1  e. NN0*
)
53, 4ax-mp 5 . . . . 5  |-  1  e. NN0*
6 nn0nepnf 9236 . . . . . . 7  |-  ( 1  e.  NN0  ->  1  =/= +oo )
73, 6ax-mp 5 . . . . . 6  |-  1  =/= +oo
87necomi 2432 . . . . 5  |- +oo  =/=  1
9 fvunsng 5706 . . . . 5  |-  ( ( 1  e. NN0*  /\ +oo  =/=  1 )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
) )
105, 8, 9mp2an 426 . . . 4  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
)
11 fxnn0nninf.g . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1211frechashgf1o 10414 . . . . . . 7  |-  G : om
-1-1-onto-> NN0
13 f1ocnv 5470 . . . . . . 7  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
1412, 13ax-mp 5 . . . . . 6  |-  `' G : NN0
-1-1-onto-> om
15 f1of 5457 . . . . . 6  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
1614, 15ax-mp 5 . . . . 5  |-  `' G : NN0 --> om
17 fvco3 5583 . . . . 5  |-  ( ( `' G : NN0 --> om  /\  1  e.  NN0 )  -> 
( ( F  o.  `' G ) `  1
)  =  ( F `
 ( `' G `  1 ) ) )
1816, 3, 17mp2an 426 . . . 4  |-  ( ( F  o.  `' G
) `  1 )  =  ( F `  ( `' G `  1 ) )
192, 10, 183eqtri 2202 . . 3  |-  ( I `
 1 )  =  ( F `  ( `' G `  1 ) )
20 df-1o 6411 . . . . . . 7  |-  1o  =  suc  (/)
2120fveq2i 5514 . . . . . 6  |-  ( G `
 1o )  =  ( G `  suc  (/) )
22 0zd 9254 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
23 peano1 4590 . . . . . . . . . 10  |-  (/)  e.  om
2423a1i 9 . . . . . . . . 9  |-  ( T. 
->  (/)  e.  om )
2522, 11, 24frec2uzsucd 10387 . . . . . . . 8  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
2625mptru 1362 . . . . . . 7  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
2722, 11frec2uz0d 10385 . . . . . . . . 9  |-  ( T. 
->  ( G `  (/) )  =  0 )
2827mptru 1362 . . . . . . . 8  |-  ( G `
 (/) )  =  0
2928oveq1i 5879 . . . . . . 7  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
3026, 29eqtri 2198 . . . . . 6  |-  ( G `
 suc  (/) )  =  ( 0  +  1 )
31 0p1e1 9022 . . . . . 6  |-  ( 0  +  1 )  =  1
3221, 30, 313eqtri 2202 . . . . 5  |-  ( G `
 1o )  =  1
33 1onn 6515 . . . . . 6  |-  1o  e.  om
34 f1ocnvfv 5774 . . . . . 6  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
3512, 33, 34mp2an 426 . . . . 5  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
3632, 35ax-mp 5 . . . 4  |-  ( `' G `  1 )  =  1o
3736fveq2i 5514 . . 3  |-  ( F `
 ( `' G `  1 ) )  =  ( F `  1o )
38 eleq2 2241 . . . . . . 7  |-  ( n  =  1o  ->  (
i  e.  n  <->  i  e.  1o ) )
3938ifbid 3555 . . . . . 6  |-  ( n  =  1o  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  1o ,  1o ,  (/) ) )
4039mpteq2dv 4091 . . . . 5  |-  ( n  =  1o  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
41 fxnn0nninf.f . . . . 5  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
42 omex 4589 . . . . . 6  |-  om  e.  _V
4342mptex 5738 . . . . 5  |-  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.  _V
4440, 41, 43fvmpt3i 5592 . . . 4  |-  ( 1o  e.  om  ->  ( F `  1o )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
4533, 44ax-mp 5 . . 3  |-  ( F `
 1o )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
4619, 37, 453eqtri 2202 . 2  |-  ( I `
 1 )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
47 el1o 6432 . . . 4  |-  ( i  e.  1o  <->  i  =  (/) )
48 ifbi 3554 . . . 4  |-  ( ( i  e.  1o  <->  i  =  (/) )  ->  if (
i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) ) )
4947, 48ax-mp 5 . . 3  |-  if ( i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) )
5049mpteq2i 4087 . 2  |-  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o ,  (/) ) )
51 eqeq1 2184 . . . 4  |-  ( i  =  x  ->  (
i  =  (/)  <->  x  =  (/) ) )
5251ifbid 3555 . . 3  |-  ( i  =  x  ->  if ( i  =  (/) ,  1o ,  (/) )  =  if ( x  =  (/) ,  1o ,  (/) ) )
5352cbvmptv 4096 . 2  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  (/) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
5446, 50, 533eqtri 2202 1  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   T. wtru 1354    e. wcel 2148    =/= wne 2347    u. cun 3127   (/)c0 3422   ifcif 3534   {csn 3591   <.cop 3594    |-> cmpt 4061   suc csuc 4362   omcom 4586    X. cxp 4621   `'ccnv 4622    o. ccom 4627   -->wf 5208   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869  freccfrec 6385   1oc1o 6404   0cc0 7802   1c1 7803    + caddc 7805   +oocpnf 7979   NN0cn0 9165  NN0*cxnn0 9228   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-recs 6300  df-frec 6386  df-1o 6411  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-xnn0 9229  df-z 9243  df-uz 9518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator