ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf Unicode version

Theorem 1tonninf 9777
Description: The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
1tonninf  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Distinct variable groups:    i, n    x, i
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5271 . . . 4  |-  ( I `
 1 )  =  ( ( ( F  o.  `' G )  u.  { <. +oo , 
( om  X.  { 1o } ) >. } ) `
 1 )
3 1nn0 8625 . . . . . 6  |-  1  e.  NN0
4 nn0xnn0 8676 . . . . . 6  |-  ( 1  e.  NN0  ->  1  e. NN0*
)
53, 4ax-mp 7 . . . . 5  |-  1  e. NN0*
6 nn0nepnf 8680 . . . . . . 7  |-  ( 1  e.  NN0  ->  1  =/= +oo )
73, 6ax-mp 7 . . . . . 6  |-  1  =/= +oo
87necomi 2336 . . . . 5  |- +oo  =/=  1
9 fvunsng 5456 . . . . 5  |-  ( ( 1  e. NN0*  /\ +oo  =/=  1 )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
) )
105, 8, 9mp2an 417 . . . 4  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
)
11 fxnn0nninf.g . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1211frechashgf1o 9766 . . . . . . 7  |-  G : om
-1-1-onto-> NN0
13 f1ocnv 5231 . . . . . . 7  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
1412, 13ax-mp 7 . . . . . 6  |-  `' G : NN0
-1-1-onto-> om
15 f1of 5218 . . . . . 6  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
1614, 15ax-mp 7 . . . . 5  |-  `' G : NN0 --> om
17 fvco3 5340 . . . . 5  |-  ( ( `' G : NN0 --> om  /\  1  e.  NN0 )  -> 
( ( F  o.  `' G ) `  1
)  =  ( F `
 ( `' G `  1 ) ) )
1816, 3, 17mp2an 417 . . . 4  |-  ( ( F  o.  `' G
) `  1 )  =  ( F `  ( `' G `  1 ) )
192, 10, 183eqtri 2109 . . 3  |-  ( I `
 1 )  =  ( F `  ( `' G `  1 ) )
20 df-1o 6137 . . . . . . 7  |-  1o  =  suc  (/)
2120fveq2i 5273 . . . . . 6  |-  ( G `
 1o )  =  ( G `  suc  (/) )
22 0zd 8698 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
23 peano1 4384 . . . . . . . . . 10  |-  (/)  e.  om
2423a1i 9 . . . . . . . . 9  |-  ( T. 
->  (/)  e.  om )
2522, 11, 24frec2uzsucd 9739 . . . . . . . 8  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
2625trud 1296 . . . . . . 7  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
2722, 11frec2uz0d 9737 . . . . . . . . 9  |-  ( T. 
->  ( G `  (/) )  =  0 )
2827trud 1296 . . . . . . . 8  |-  ( G `
 (/) )  =  0
2928oveq1i 5625 . . . . . . 7  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
3026, 29eqtri 2105 . . . . . 6  |-  ( G `
 suc  (/) )  =  ( 0  +  1 )
31 0p1e1 8474 . . . . . 6  |-  ( 0  +  1 )  =  1
3221, 30, 313eqtri 2109 . . . . 5  |-  ( G `
 1o )  =  1
33 1onn 6233 . . . . . 6  |-  1o  e.  om
34 f1ocnvfv 5521 . . . . . 6  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
3512, 33, 34mp2an 417 . . . . 5  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
3632, 35ax-mp 7 . . . 4  |-  ( `' G `  1 )  =  1o
3736fveq2i 5273 . . 3  |-  ( F `
 ( `' G `  1 ) )  =  ( F `  1o )
38 eleq2 2148 . . . . . . 7  |-  ( n  =  1o  ->  (
i  e.  n  <->  i  e.  1o ) )
3938ifbid 3398 . . . . . 6  |-  ( n  =  1o  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  1o ,  1o ,  (/) ) )
4039mpteq2dv 3906 . . . . 5  |-  ( n  =  1o  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
41 fxnn0nninf.f . . . . 5  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
42 omex 4383 . . . . . 6  |-  om  e.  _V
4342mptex 5486 . . . . 5  |-  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.  _V
4440, 41, 43fvmpt3i 5349 . . . 4  |-  ( 1o  e.  om  ->  ( F `  1o )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
4533, 44ax-mp 7 . . 3  |-  ( F `
 1o )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
4619, 37, 453eqtri 2109 . 2  |-  ( I `
 1 )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
47 el1o 6157 . . . 4  |-  ( i  e.  1o  <->  i  =  (/) )
48 ifbi 3397 . . . 4  |-  ( ( i  e.  1o  <->  i  =  (/) )  ->  if (
i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) ) )
4947, 48ax-mp 7 . . 3  |-  if ( i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) )
5049mpteq2i 3902 . 2  |-  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o ,  (/) ) )
51 eqeq1 2091 . . . 4  |-  ( i  =  x  ->  (
i  =  (/)  <->  x  =  (/) ) )
5251ifbid 3398 . . 3  |-  ( i  =  x  ->  if ( i  =  (/) ,  1o ,  (/) )  =  if ( x  =  (/) ,  1o ,  (/) ) )
5352cbvmptv 3911 . 2  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  (/) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
5446, 50, 533eqtri 2109 1  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1287   T. wtru 1288    e. wcel 1436    =/= wne 2251    u. cun 2986   (/)c0 3275   ifcif 3379   {csn 3431   <.cop 3434    |-> cmpt 3876   suc csuc 4168   omcom 4380    X. cxp 4411   `'ccnv 4412    o. ccom 4417   -->wf 4979   -1-1-onto->wf1o 4982   ` cfv 4983  (class class class)co 5615  freccfrec 6111   1oc1o 6130   0cc0 7297   1c1 7298    + caddc 7300   +oocpnf 7466   NN0cn0 8609  NN0*cxnn0 8672   ZZcz 8686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-addcom 7392  ax-addass 7394  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-0id 7400  ax-rnegex 7401  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-ltadd 7408
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-recs 6026  df-frec 6112  df-1o 6137  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-inn 8361  df-n0 8610  df-xnn0 8673  df-z 8687  df-uz 8955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator