ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf Unicode version

Theorem 1tonninf 10623
Description: The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
1tonninf  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Distinct variable groups:    i, n    x, i
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5600 . . . 4  |-  ( I `
 1 )  =  ( ( ( F  o.  `' G )  u.  { <. +oo , 
( om  X.  { 1o } ) >. } ) `
 1 )
3 1nn0 9346 . . . . . 6  |-  1  e.  NN0
4 nn0xnn0 9397 . . . . . 6  |-  ( 1  e.  NN0  ->  1  e. NN0*
)
53, 4ax-mp 5 . . . . 5  |-  1  e. NN0*
6 nn0nepnf 9401 . . . . . . 7  |-  ( 1  e.  NN0  ->  1  =/= +oo )
73, 6ax-mp 5 . . . . . 6  |-  1  =/= +oo
87necomi 2463 . . . . 5  |- +oo  =/=  1
9 fvunsng 5801 . . . . 5  |-  ( ( 1  e. NN0*  /\ +oo  =/=  1 )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
) )
105, 8, 9mp2an 426 . . . 4  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
1 )  =  ( ( F  o.  `' G ) `  1
)
11 fxnn0nninf.g . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1211frechashgf1o 10610 . . . . . . 7  |-  G : om
-1-1-onto-> NN0
13 f1ocnv 5557 . . . . . . 7  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
1412, 13ax-mp 5 . . . . . 6  |-  `' G : NN0
-1-1-onto-> om
15 f1of 5544 . . . . . 6  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
1614, 15ax-mp 5 . . . . 5  |-  `' G : NN0 --> om
17 fvco3 5673 . . . . 5  |-  ( ( `' G : NN0 --> om  /\  1  e.  NN0 )  -> 
( ( F  o.  `' G ) `  1
)  =  ( F `
 ( `' G `  1 ) ) )
1816, 3, 17mp2an 426 . . . 4  |-  ( ( F  o.  `' G
) `  1 )  =  ( F `  ( `' G `  1 ) )
192, 10, 183eqtri 2232 . . 3  |-  ( I `
 1 )  =  ( F `  ( `' G `  1 ) )
20 df-1o 6525 . . . . . . 7  |-  1o  =  suc  (/)
2120fveq2i 5602 . . . . . 6  |-  ( G `
 1o )  =  ( G `  suc  (/) )
22 0zd 9419 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
23 peano1 4660 . . . . . . . . . 10  |-  (/)  e.  om
2423a1i 9 . . . . . . . . 9  |-  ( T. 
->  (/)  e.  om )
2522, 11, 24frec2uzsucd 10583 . . . . . . . 8  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
2625mptru 1382 . . . . . . 7  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
2722, 11frec2uz0d 10581 . . . . . . . . 9  |-  ( T. 
->  ( G `  (/) )  =  0 )
2827mptru 1382 . . . . . . . 8  |-  ( G `
 (/) )  =  0
2928oveq1i 5977 . . . . . . 7  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
3026, 29eqtri 2228 . . . . . 6  |-  ( G `
 suc  (/) )  =  ( 0  +  1 )
31 0p1e1 9185 . . . . . 6  |-  ( 0  +  1 )  =  1
3221, 30, 313eqtri 2232 . . . . 5  |-  ( G `
 1o )  =  1
33 1onn 6629 . . . . . 6  |-  1o  e.  om
34 f1ocnvfv 5871 . . . . . 6  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
3512, 33, 34mp2an 426 . . . . 5  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
3632, 35ax-mp 5 . . . 4  |-  ( `' G `  1 )  =  1o
3736fveq2i 5602 . . 3  |-  ( F `
 ( `' G `  1 ) )  =  ( F `  1o )
38 eleq2 2271 . . . . . . 7  |-  ( n  =  1o  ->  (
i  e.  n  <->  i  e.  1o ) )
3938ifbid 3601 . . . . . 6  |-  ( n  =  1o  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  1o ,  1o ,  (/) ) )
4039mpteq2dv 4151 . . . . 5  |-  ( n  =  1o  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
41 fxnn0nninf.f . . . . 5  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
42 omex 4659 . . . . . 6  |-  om  e.  _V
4342mptex 5833 . . . . 5  |-  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.  _V
4440, 41, 43fvmpt3i 5682 . . . 4  |-  ( 1o  e.  om  ->  ( F `  1o )  =  ( i  e. 
om  |->  if ( i  e.  1o ,  1o ,  (/) ) ) )
4533, 44ax-mp 5 . . 3  |-  ( F `
 1o )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
4619, 37, 453eqtri 2232 . 2  |-  ( I `
 1 )  =  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )
47 el1o 6546 . . . 4  |-  ( i  e.  1o  <->  i  =  (/) )
48 ifbi 3600 . . . 4  |-  ( ( i  e.  1o  <->  i  =  (/) )  ->  if (
i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) ) )
4947, 48ax-mp 5 . . 3  |-  if ( i  e.  1o ,  1o ,  (/) )  =  if ( i  =  (/) ,  1o ,  (/) )
5049mpteq2i 4147 . 2  |-  ( i  e.  om  |->  if ( i  e.  1o ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o ,  (/) ) )
51 eqeq1 2214 . . . 4  |-  ( i  =  x  ->  (
i  =  (/)  <->  x  =  (/) ) )
5251ifbid 3601 . . 3  |-  ( i  =  x  ->  if ( i  =  (/) ,  1o ,  (/) )  =  if ( x  =  (/) ,  1o ,  (/) ) )
5352cbvmptv 4156 . 2  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  (/) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
5446, 50, 533eqtri 2232 1  |-  ( I `
 1 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   T. wtru 1374    e. wcel 2178    =/= wne 2378    u. cun 3172   (/)c0 3468   ifcif 3579   {csn 3643   <.cop 3646    |-> cmpt 4121   suc csuc 4430   omcom 4656    X. cxp 4691   `'ccnv 4692    o. ccom 4697   -->wf 5286   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967  freccfrec 6499   1oc1o 6518   0cc0 7960   1c1 7961    + caddc 7963   +oocpnf 8139   NN0cn0 9330  NN0*cxnn0 9393   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-1o 6525  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-xnn0 9394  df-z 9408  df-uz 9684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator