| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1tonninf | Unicode version | ||
| Description: The mapping of one into ℕ∞ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g |
|
| fxnn0nninf.f |
|
| fxnn0nninf.i |
|
| Ref | Expression |
|---|---|
| 1tonninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i |
. . . . 5
| |
| 2 | 1 | fveq1i 5562 |
. . . 4
|
| 3 | 1nn0 9282 |
. . . . . 6
| |
| 4 | nn0xnn0 9333 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | nn0nepnf 9337 |
. . . . . . 7
| |
| 7 | 3, 6 | ax-mp 5 |
. . . . . 6
|
| 8 | 7 | necomi 2452 |
. . . . 5
|
| 9 | fvunsng 5759 |
. . . . 5
| |
| 10 | 5, 8, 9 | mp2an 426 |
. . . 4
|
| 11 | fxnn0nninf.g |
. . . . . . . 8
| |
| 12 | 11 | frechashgf1o 10537 |
. . . . . . 7
|
| 13 | f1ocnv 5520 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | f1of 5507 |
. . . . . 6
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
|
| 17 | fvco3 5635 |
. . . . 5
| |
| 18 | 16, 3, 17 | mp2an 426 |
. . . 4
|
| 19 | 2, 10, 18 | 3eqtri 2221 |
. . 3
|
| 20 | df-1o 6483 |
. . . . . . 7
| |
| 21 | 20 | fveq2i 5564 |
. . . . . 6
|
| 22 | 0zd 9355 |
. . . . . . . . 9
| |
| 23 | peano1 4631 |
. . . . . . . . . 10
| |
| 24 | 23 | a1i 9 |
. . . . . . . . 9
|
| 25 | 22, 11, 24 | frec2uzsucd 10510 |
. . . . . . . 8
|
| 26 | 25 | mptru 1373 |
. . . . . . 7
|
| 27 | 22, 11 | frec2uz0d 10508 |
. . . . . . . . 9
|
| 28 | 27 | mptru 1373 |
. . . . . . . 8
|
| 29 | 28 | oveq1i 5935 |
. . . . . . 7
|
| 30 | 26, 29 | eqtri 2217 |
. . . . . 6
|
| 31 | 0p1e1 9121 |
. . . . . 6
| |
| 32 | 21, 30, 31 | 3eqtri 2221 |
. . . . 5
|
| 33 | 1onn 6587 |
. . . . . 6
| |
| 34 | f1ocnvfv 5829 |
. . . . . 6
| |
| 35 | 12, 33, 34 | mp2an 426 |
. . . . 5
|
| 36 | 32, 35 | ax-mp 5 |
. . . 4
|
| 37 | 36 | fveq2i 5564 |
. . 3
|
| 38 | eleq2 2260 |
. . . . . . 7
| |
| 39 | 38 | ifbid 3583 |
. . . . . 6
|
| 40 | 39 | mpteq2dv 4125 |
. . . . 5
|
| 41 | fxnn0nninf.f |
. . . . 5
| |
| 42 | omex 4630 |
. . . . . 6
| |
| 43 | 42 | mptex 5791 |
. . . . 5
|
| 44 | 40, 41, 43 | fvmpt3i 5644 |
. . . 4
|
| 45 | 33, 44 | ax-mp 5 |
. . 3
|
| 46 | 19, 37, 45 | 3eqtri 2221 |
. 2
|
| 47 | el1o 6504 |
. . . 4
| |
| 48 | ifbi 3582 |
. . . 4
| |
| 49 | 47, 48 | ax-mp 5 |
. . 3
|
| 50 | 49 | mpteq2i 4121 |
. 2
|
| 51 | eqeq1 2203 |
. . . 4
| |
| 52 | 51 | ifbid 3583 |
. . 3
|
| 53 | 52 | cbvmptv 4130 |
. 2
|
| 54 | 46, 50, 53 | 3eqtri 2221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-1o 6483 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-xnn0 9330 df-z 9344 df-uz 9619 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |