ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr Unicode version

Theorem xnn0xr 9317
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr  |-  ( A  e. NN0*  ->  A  e.  RR* )

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9314 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9258 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32rexrd 8076 . . 3  |-  ( A  e.  NN0  ->  A  e. 
RR* )
4 pnfxr 8079 . . . 4  |- +oo  e.  RR*
5 eleq1 2259 . . . 4  |-  ( A  = +oo  ->  ( A  e.  RR*  <-> +oo  e.  RR* ) )
64, 5mpbiri 168 . . 3  |-  ( A  = +oo  ->  A  e.  RR* )
73, 6jaoi 717 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  e.  RR* )
81, 7sylbi 121 1  |-  ( A  e. NN0*  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2167   +oocpnf 8058   RR*cxr 8060   NN0cn0 9249  NN0*cxnn0 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-pnf 8063  df-xr 8065  df-inn 8991  df-n0 9250  df-xnn0 9313
This theorem is referenced by:  xnn0xrnemnf  9324  xnn0dcle  9877  xnn0letri  9878
  Copyright terms: Public domain W3C validator