ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr Unicode version

Theorem xnn0xr 9433
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr  |-  ( A  e. NN0*  ->  A  e.  RR* )

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9430 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9374 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32rexrd 8192 . . 3  |-  ( A  e.  NN0  ->  A  e. 
RR* )
4 pnfxr 8195 . . . 4  |- +oo  e.  RR*
5 eleq1 2292 . . . 4  |-  ( A  = +oo  ->  ( A  e.  RR*  <-> +oo  e.  RR* ) )
64, 5mpbiri 168 . . 3  |-  ( A  = +oo  ->  A  e.  RR* )
73, 6jaoi 721 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  e.  RR* )
81, 7sylbi 121 1  |-  ( A  e. NN0*  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200   +oocpnf 8174   RR*cxr 8176   NN0cn0 9365  NN0*cxnn0 9428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-pnf 8179  df-xr 8181  df-inn 9107  df-n0 9366  df-xnn0 9429
This theorem is referenced by:  xnn0xrnemnf  9440  xnn0dcle  9994  xnn0letri  9995
  Copyright terms: Public domain W3C validator