ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr Unicode version

Theorem xnn0xr 9176
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr  |-  ( A  e. NN0*  ->  A  e.  RR* )

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9173 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9117 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32rexrd 7942 . . 3  |-  ( A  e.  NN0  ->  A  e. 
RR* )
4 pnfxr 7945 . . . 4  |- +oo  e.  RR*
5 eleq1 2227 . . . 4  |-  ( A  = +oo  ->  ( A  e.  RR*  <-> +oo  e.  RR* ) )
64, 5mpbiri 167 . . 3  |-  ( A  = +oo  ->  A  e.  RR* )
73, 6jaoi 706 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  e.  RR* )
81, 7sylbi 120 1  |-  ( A  e. NN0*  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1342    e. wcel 2135   +oocpnf 7924   RR*cxr 7926   NN0cn0 9108  NN0*cxnn0 9171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-un 4408  ax-cnex 7838  ax-resscn 7839  ax-1re 7841  ax-addrcl 7844  ax-rnegex 7856
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2726  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-uni 3787  df-int 3822  df-pnf 7929  df-xr 7931  df-inn 8852  df-n0 9109  df-xnn0 9172
This theorem is referenced by:  xnn0xrnemnf  9183  xnn0dcle  9732  xnn0letri  9733
  Copyright terms: Public domain W3C validator