ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr Unicode version

Theorem xnn0xr 9362
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr  |-  ( A  e. NN0*  ->  A  e.  RR* )

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9359 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9303 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32rexrd 8121 . . 3  |-  ( A  e.  NN0  ->  A  e. 
RR* )
4 pnfxr 8124 . . . 4  |- +oo  e.  RR*
5 eleq1 2267 . . . 4  |-  ( A  = +oo  ->  ( A  e.  RR*  <-> +oo  e.  RR* ) )
64, 5mpbiri 168 . . 3  |-  ( A  = +oo  ->  A  e.  RR* )
73, 6jaoi 717 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  e.  RR* )
81, 7sylbi 121 1  |-  ( A  e. NN0*  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1372    e. wcel 2175   +oocpnf 8103   RR*cxr 8105   NN0cn0 9294  NN0*cxnn0 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021  ax-rnegex 8033
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-pnf 8108  df-xr 8110  df-inn 9036  df-n0 9295  df-xnn0 9358
This theorem is referenced by:  xnn0xrnemnf  9369  xnn0dcle  9923  xnn0letri  9924
  Copyright terms: Public domain W3C validator