ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr Unicode version

Theorem xnn0xr 9383
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr  |-  ( A  e. NN0*  ->  A  e.  RR* )

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9380 . 2  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 nn0re 9324 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
32rexrd 8142 . . 3  |-  ( A  e.  NN0  ->  A  e. 
RR* )
4 pnfxr 8145 . . . 4  |- +oo  e.  RR*
5 eleq1 2269 . . . 4  |-  ( A  = +oo  ->  ( A  e.  RR*  <-> +oo  e.  RR* ) )
64, 5mpbiri 168 . . 3  |-  ( A  = +oo  ->  A  e.  RR* )
73, 6jaoi 718 . 2  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  A  e.  RR* )
81, 7sylbi 121 1  |-  ( A  e. NN0*  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2177   +oocpnf 8124   RR*cxr 8126   NN0cn0 9315  NN0*cxnn0 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042  ax-rnegex 8054
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-int 3892  df-pnf 8129  df-xr 8131  df-inn 9057  df-n0 9316  df-xnn0 9379
This theorem is referenced by:  xnn0xrnemnf  9390  xnn0dcle  9944  xnn0letri  9945
  Copyright terms: Public domain W3C validator