ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xadd0 Unicode version

Theorem xnn0xadd0 9942
Description: The sum of two extended nonnegative integers is  0 iff each of the two extended nonnegative integers is 
0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 9314 . . . 4  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 elxnn0 9314 . . . . . . 7  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
3 nn0re 9258 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  A  e.  RR )
4 nn0re 9258 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  B  e.  RR )
5 rexadd 9927 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
63, 4, 5syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A +e
B )  =  ( A  +  B ) )
76eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A  +  B )  =  0 ) )
8 nn0ge0 9274 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  0  <_  A )
93, 8jca 306 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  ( A  e.  RR  /\  0  <_  A ) )
10 nn0ge0 9274 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  0  <_  B )
114, 10jca 306 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  ( B  e.  RR  /\  0  <_  B ) )
12 add20 8501 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
139, 11, 12syl2an 289 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  +  B )  =  0  <-> 
( A  =  0  /\  B  =  0 ) ) )
147, 13bitrd 188 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
1514biimpd 144 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
1615expcom 116 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( A  e.  NN0  ->  ( ( A +e B )  =  0  -> 
( A  =  0  /\  B  =  0 ) ) ) )
17 oveq2 5930 . . . . . . . . . . . . 13  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
1817eqeq1d 2205 . . . . . . . . . . . 12  |-  ( B  = +oo  ->  (
( A +e
B )  =  0  <-> 
( A +e +oo )  =  0
) )
1918adantr 276 . . . . . . . . . . 11  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A +e +oo )  =  0 ) )
20 nn0xnn0 9316 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  A  e. NN0*
)
21 xnn0xrnemnf 9324 . . . . . . . . . . . . . 14  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )
22 xaddpnf1 9921 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
2320, 21, 223syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  ( A +e +oo )  = +oo )
2423adantl 277 . . . . . . . . . . . 12  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( A +e +oo )  = +oo )
2524eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e +oo )  =  0  <-> +oo  =  0 ) )
2619, 25bitrd 188 . . . . . . . . . 10  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  <-> +oo  =  0 ) )
27 0re 8026 . . . . . . . . . . . . 13  |-  0  e.  RR
28 renepnf 8074 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  ->  0  =/= +oo )
2927, 28ax-mp 5 . . . . . . . . . . . 12  |-  0  =/= +oo
3029nesymi 2413 . . . . . . . . . . 11  |-  -. +oo  =  0
3130pm2.21i 647 . . . . . . . . . 10  |-  ( +oo  =  0  ->  ( A  =  0  /\  B  =  0 ) )
3226, 31biimtrdi 163 . . . . . . . . 9  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
3332ex 115 . . . . . . . 8  |-  ( B  = +oo  ->  ( A  e.  NN0  ->  (
( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
3416, 33jaoi 717 . . . . . . 7  |-  ( ( B  e.  NN0  \/  B  = +oo )  ->  ( A  e.  NN0  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
352, 34sylbi 121 . . . . . 6  |-  ( B  e. NN0*  ->  ( A  e. 
NN0  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
3635com12 30 . . . . 5  |-  ( A  e.  NN0  ->  ( B  e. NN0*  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
37 oveq1 5929 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e B )  =  ( +oo +e B ) )
3837eqeq1d 2205 . . . . . . . 8  |-  ( A  = +oo  ->  (
( A +e
B )  =  0  <-> 
( +oo +e B )  =  0 ) )
39 xnn0xrnemnf 9324 . . . . . . . . . 10  |-  ( B  e. NN0*  ->  ( B  e. 
RR*  /\  B  =/= -oo ) )
40 xaddpnf2 9922 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
4139, 40syl 14 . . . . . . . . 9  |-  ( B  e. NN0*  ->  ( +oo +e B )  = +oo )
4241eqeq1d 2205 . . . . . . . 8  |-  ( B  e. NN0*  ->  ( ( +oo +e B )  =  0  <-> +oo  =  0 ) )
4338, 42sylan9bb 462 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e. NN0* )  ->  ( ( A +e
B )  =  0  <-> +oo  =  0 ) )
4443, 31biimtrdi 163 . . . . . 6  |-  ( ( A  = +oo  /\  B  e. NN0* )  ->  ( ( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
4544ex 115 . . . . 5  |-  ( A  = +oo  ->  ( B  e. NN0*  ->  ( ( A +e B )  =  0  -> 
( A  =  0  /\  B  =  0 ) ) ) )
4636, 45jaoi 717 . . . 4  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  ( B  e. NN0*  ->  ( ( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
471, 46sylbi 121 . . 3  |-  ( A  e. NN0*  ->  ( B  e. NN0* 
->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
4847imp 124 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
49 oveq12 5931 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A +e B )  =  ( 0 +e 0 ) )
50 0xr 8073 . . . 4  |-  0  e.  RR*
51 xaddid1 9937 . . . 4  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
5250, 51ax-mp 5 . . 3  |-  ( 0 +e 0 )  =  0
5349, 52eqtrdi 2245 . 2  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A +e B )  =  0 )
5448, 53impbid1 142 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879    + caddc 7882   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060    <_ cle 8062   NN0cn0 9249  NN0*cxnn0 9312   +ecxad 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-inn 8991  df-n0 9250  df-xnn0 9313  df-xadd 9848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator