ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xadd0 Unicode version

Theorem xnn0xadd0 9803
Description: The sum of two extended nonnegative integers is  0 iff each of the two extended nonnegative integers is 
0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 9179 . . . 4  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 elxnn0 9179 . . . . . . 7  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
3 nn0re 9123 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  A  e.  RR )
4 nn0re 9123 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  B  e.  RR )
5 rexadd 9788 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
63, 4, 5syl2an 287 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A +e
B )  =  ( A  +  B ) )
76eqeq1d 2174 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A  +  B )  =  0 ) )
8 nn0ge0 9139 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  0  <_  A )
93, 8jca 304 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  ( A  e.  RR  /\  0  <_  A ) )
10 nn0ge0 9139 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  0  <_  B )
114, 10jca 304 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  ( B  e.  RR  /\  0  <_  B ) )
12 add20 8372 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
139, 11, 12syl2an 287 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  +  B )  =  0  <-> 
( A  =  0  /\  B  =  0 ) ) )
147, 13bitrd 187 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
1514biimpd 143 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
1615expcom 115 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( A  e.  NN0  ->  ( ( A +e B )  =  0  -> 
( A  =  0  /\  B  =  0 ) ) ) )
17 oveq2 5850 . . . . . . . . . . . . 13  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
1817eqeq1d 2174 . . . . . . . . . . . 12  |-  ( B  = +oo  ->  (
( A +e
B )  =  0  <-> 
( A +e +oo )  =  0
) )
1918adantr 274 . . . . . . . . . . 11  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A +e +oo )  =  0 ) )
20 nn0xnn0 9181 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  A  e. NN0*
)
21 xnn0xrnemnf 9189 . . . . . . . . . . . . . 14  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )
22 xaddpnf1 9782 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
2320, 21, 223syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  ( A +e +oo )  = +oo )
2423adantl 275 . . . . . . . . . . . 12  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( A +e +oo )  = +oo )
2524eqeq1d 2174 . . . . . . . . . . 11  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e +oo )  =  0  <-> +oo  =  0 ) )
2619, 25bitrd 187 . . . . . . . . . 10  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  <-> +oo  =  0 ) )
27 0re 7899 . . . . . . . . . . . . 13  |-  0  e.  RR
28 renepnf 7946 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  ->  0  =/= +oo )
2927, 28ax-mp 5 . . . . . . . . . . . 12  |-  0  =/= +oo
3029nesymi 2382 . . . . . . . . . . 11  |-  -. +oo  =  0
3130pm2.21i 636 . . . . . . . . . 10  |-  ( +oo  =  0  ->  ( A  =  0  /\  B  =  0 ) )
3226, 31syl6bi 162 . . . . . . . . 9  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
3332ex 114 . . . . . . . 8  |-  ( B  = +oo  ->  ( A  e.  NN0  ->  (
( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
3416, 33jaoi 706 . . . . . . 7  |-  ( ( B  e.  NN0  \/  B  = +oo )  ->  ( A  e.  NN0  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
352, 34sylbi 120 . . . . . 6  |-  ( B  e. NN0*  ->  ( A  e. 
NN0  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
3635com12 30 . . . . 5  |-  ( A  e.  NN0  ->  ( B  e. NN0*  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
37 oveq1 5849 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e B )  =  ( +oo +e B ) )
3837eqeq1d 2174 . . . . . . . 8  |-  ( A  = +oo  ->  (
( A +e
B )  =  0  <-> 
( +oo +e B )  =  0 ) )
39 xnn0xrnemnf 9189 . . . . . . . . . 10  |-  ( B  e. NN0*  ->  ( B  e. 
RR*  /\  B  =/= -oo ) )
40 xaddpnf2 9783 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
4139, 40syl 14 . . . . . . . . 9  |-  ( B  e. NN0*  ->  ( +oo +e B )  = +oo )
4241eqeq1d 2174 . . . . . . . 8  |-  ( B  e. NN0*  ->  ( ( +oo +e B )  =  0  <-> +oo  =  0 ) )
4338, 42sylan9bb 458 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e. NN0* )  ->  ( ( A +e
B )  =  0  <-> +oo  =  0 ) )
4443, 31syl6bi 162 . . . . . 6  |-  ( ( A  = +oo  /\  B  e. NN0* )  ->  ( ( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
4544ex 114 . . . . 5  |-  ( A  = +oo  ->  ( B  e. NN0*  ->  ( ( A +e B )  =  0  -> 
( A  =  0  /\  B  =  0 ) ) ) )
4636, 45jaoi 706 . . . 4  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  ( B  e. NN0*  ->  ( ( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
471, 46sylbi 120 . . 3  |-  ( A  e. NN0*  ->  ( B  e. NN0* 
->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
4847imp 123 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
49 oveq12 5851 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A +e B )  =  ( 0 +e 0 ) )
50 0xr 7945 . . . 4  |-  0  e.  RR*
51 xaddid1 9798 . . . 4  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
5250, 51ax-mp 5 . . 3  |-  ( 0 +e 0 )  =  0
5349, 52eqtrdi 2215 . 2  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A +e B )  =  0 )
5448, 53impbid1 141 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    <_ cle 7934   NN0cn0 9114  NN0*cxnn0 9177   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-inn 8858  df-n0 9115  df-xnn0 9178  df-xadd 9709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator