ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xadd0 Unicode version

Theorem xnn0xadd0 9854
Description: The sum of two extended nonnegative integers is  0 iff each of the two extended nonnegative integers is 
0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 9230 . . . 4  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2 elxnn0 9230 . . . . . . 7  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
3 nn0re 9174 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  A  e.  RR )
4 nn0re 9174 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  B  e.  RR )
5 rexadd 9839 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
63, 4, 5syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A +e
B )  =  ( A  +  B ) )
76eqeq1d 2186 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A  +  B )  =  0 ) )
8 nn0ge0 9190 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  0  <_  A )
93, 8jca 306 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  ( A  e.  RR  /\  0  <_  A ) )
10 nn0ge0 9190 . . . . . . . . . . . . 13  |-  ( B  e.  NN0  ->  0  <_  B )
114, 10jca 306 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  ( B  e.  RR  /\  0  <_  B ) )
12 add20 8421 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
139, 11, 12syl2an 289 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  +  B )  =  0  <-> 
( A  =  0  /\  B  =  0 ) ) )
147, 13bitrd 188 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
1514biimpd 144 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
1615expcom 116 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( A  e.  NN0  ->  ( ( A +e B )  =  0  -> 
( A  =  0  /\  B  =  0 ) ) ) )
17 oveq2 5877 . . . . . . . . . . . . 13  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
1817eqeq1d 2186 . . . . . . . . . . . 12  |-  ( B  = +oo  ->  (
( A +e
B )  =  0  <-> 
( A +e +oo )  =  0
) )
1918adantr 276 . . . . . . . . . . 11  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  <->  ( A +e +oo )  =  0 ) )
20 nn0xnn0 9232 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  A  e. NN0*
)
21 xnn0xrnemnf 9240 . . . . . . . . . . . . . 14  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )
22 xaddpnf1 9833 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
2320, 21, 223syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  NN0  ->  ( A +e +oo )  = +oo )
2423adantl 277 . . . . . . . . . . . 12  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( A +e +oo )  = +oo )
2524eqeq1d 2186 . . . . . . . . . . 11  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e +oo )  =  0  <-> +oo  =  0 ) )
2619, 25bitrd 188 . . . . . . . . . 10  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  <-> +oo  =  0 ) )
27 0re 7948 . . . . . . . . . . . . 13  |-  0  e.  RR
28 renepnf 7995 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  ->  0  =/= +oo )
2927, 28ax-mp 5 . . . . . . . . . . . 12  |-  0  =/= +oo
3029nesymi 2393 . . . . . . . . . . 11  |-  -. +oo  =  0
3130pm2.21i 646 . . . . . . . . . 10  |-  ( +oo  =  0  ->  ( A  =  0  /\  B  =  0 ) )
3226, 31syl6bi 163 . . . . . . . . 9  |-  ( ( B  = +oo  /\  A  e.  NN0 )  -> 
( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
3332ex 115 . . . . . . . 8  |-  ( B  = +oo  ->  ( A  e.  NN0  ->  (
( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
3416, 33jaoi 716 . . . . . . 7  |-  ( ( B  e.  NN0  \/  B  = +oo )  ->  ( A  e.  NN0  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
352, 34sylbi 121 . . . . . 6  |-  ( B  e. NN0*  ->  ( A  e. 
NN0  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
3635com12 30 . . . . 5  |-  ( A  e.  NN0  ->  ( B  e. NN0*  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
37 oveq1 5876 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e B )  =  ( +oo +e B ) )
3837eqeq1d 2186 . . . . . . . 8  |-  ( A  = +oo  ->  (
( A +e
B )  =  0  <-> 
( +oo +e B )  =  0 ) )
39 xnn0xrnemnf 9240 . . . . . . . . . 10  |-  ( B  e. NN0*  ->  ( B  e. 
RR*  /\  B  =/= -oo ) )
40 xaddpnf2 9834 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
4139, 40syl 14 . . . . . . . . 9  |-  ( B  e. NN0*  ->  ( +oo +e B )  = +oo )
4241eqeq1d 2186 . . . . . . . 8  |-  ( B  e. NN0*  ->  ( ( +oo +e B )  =  0  <-> +oo  =  0 ) )
4338, 42sylan9bb 462 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e. NN0* )  ->  ( ( A +e
B )  =  0  <-> +oo  =  0 ) )
4443, 31syl6bi 163 . . . . . 6  |-  ( ( A  = +oo  /\  B  e. NN0* )  ->  ( ( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
4544ex 115 . . . . 5  |-  ( A  = +oo  ->  ( B  e. NN0*  ->  ( ( A +e B )  =  0  -> 
( A  =  0  /\  B  =  0 ) ) ) )
4636, 45jaoi 716 . . . 4  |-  ( ( A  e.  NN0  \/  A  = +oo )  ->  ( B  e. NN0*  ->  ( ( A +e
B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
471, 46sylbi 121 . . 3  |-  ( A  e. NN0*  ->  ( B  e. NN0* 
->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) ) )
4847imp 124 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  ->  ( A  =  0  /\  B  =  0 ) ) )
49 oveq12 5878 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A +e B )  =  ( 0 +e 0 ) )
50 0xr 7994 . . . 4  |-  0  e.  RR*
51 xaddid1 9849 . . . 4  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
5250, 51ax-mp 5 . . 3  |-  ( 0 +e 0 )  =  0
5349, 52eqtrdi 2226 . 2  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A +e B )  =  0 )
5448, 53impbid1 142 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802    + caddc 7805   +oocpnf 7979   -oocmnf 7980   RR*cxr 7981    <_ cle 7983   NN0cn0 9165  NN0*cxnn0 9228   +ecxad 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-inn 8909  df-n0 9166  df-xnn0 9229  df-xadd 9760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator