Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0xadd0 | Unicode version |
Description: The sum of two extended nonnegative integers is iff each of the two extended nonnegative integers is . (Contributed by AV, 14-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xadd0 | NN0* NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9200 | . . . 4 NN0* | |
2 | elxnn0 9200 | . . . . . . 7 NN0* | |
3 | nn0re 9144 | . . . . . . . . . . . . 13 | |
4 | nn0re 9144 | . . . . . . . . . . . . 13 | |
5 | rexadd 9809 | . . . . . . . . . . . . 13 | |
6 | 3, 4, 5 | syl2an 287 | . . . . . . . . . . . 12 |
7 | 6 | eqeq1d 2179 | . . . . . . . . . . 11 |
8 | nn0ge0 9160 | . . . . . . . . . . . . 13 | |
9 | 3, 8 | jca 304 | . . . . . . . . . . . 12 |
10 | nn0ge0 9160 | . . . . . . . . . . . . 13 | |
11 | 4, 10 | jca 304 | . . . . . . . . . . . 12 |
12 | add20 8393 | . . . . . . . . . . . 12 | |
13 | 9, 11, 12 | syl2an 287 | . . . . . . . . . . 11 |
14 | 7, 13 | bitrd 187 | . . . . . . . . . 10 |
15 | 14 | biimpd 143 | . . . . . . . . 9 |
16 | 15 | expcom 115 | . . . . . . . 8 |
17 | oveq2 5861 | . . . . . . . . . . . . 13 | |
18 | 17 | eqeq1d 2179 | . . . . . . . . . . . 12 |
19 | 18 | adantr 274 | . . . . . . . . . . 11 |
20 | nn0xnn0 9202 | . . . . . . . . . . . . . 14 NN0* | |
21 | xnn0xrnemnf 9210 | . . . . . . . . . . . . . 14 NN0* | |
22 | xaddpnf1 9803 | . . . . . . . . . . . . . 14 | |
23 | 20, 21, 22 | 3syl 17 | . . . . . . . . . . . . 13 |
24 | 23 | adantl 275 | . . . . . . . . . . . 12 |
25 | 24 | eqeq1d 2179 | . . . . . . . . . . 11 |
26 | 19, 25 | bitrd 187 | . . . . . . . . . 10 |
27 | 0re 7920 | . . . . . . . . . . . . 13 | |
28 | renepnf 7967 | . . . . . . . . . . . . 13 | |
29 | 27, 28 | ax-mp 5 | . . . . . . . . . . . 12 |
30 | 29 | nesymi 2386 | . . . . . . . . . . 11 |
31 | 30 | pm2.21i 641 | . . . . . . . . . 10 |
32 | 26, 31 | syl6bi 162 | . . . . . . . . 9 |
33 | 32 | ex 114 | . . . . . . . 8 |
34 | 16, 33 | jaoi 711 | . . . . . . 7 |
35 | 2, 34 | sylbi 120 | . . . . . 6 NN0* |
36 | 35 | com12 30 | . . . . 5 NN0* |
37 | oveq1 5860 | . . . . . . . . 9 | |
38 | 37 | eqeq1d 2179 | . . . . . . . 8 |
39 | xnn0xrnemnf 9210 | . . . . . . . . . 10 NN0* | |
40 | xaddpnf2 9804 | . . . . . . . . . 10 | |
41 | 39, 40 | syl 14 | . . . . . . . . 9 NN0* |
42 | 41 | eqeq1d 2179 | . . . . . . . 8 NN0* |
43 | 38, 42 | sylan9bb 459 | . . . . . . 7 NN0* |
44 | 43, 31 | syl6bi 162 | . . . . . 6 NN0* |
45 | 44 | ex 114 | . . . . 5 NN0* |
46 | 36, 45 | jaoi 711 | . . . 4 NN0* |
47 | 1, 46 | sylbi 120 | . . 3 NN0* NN0* |
48 | 47 | imp 123 | . 2 NN0* NN0* |
49 | oveq12 5862 | . . 3 | |
50 | 0xr 7966 | . . . 4 | |
51 | xaddid1 9819 | . . . 4 | |
52 | 50, 51 | ax-mp 5 | . . 3 |
53 | 49, 52 | eqtrdi 2219 | . 2 |
54 | 48, 53 | impbid1 141 | 1 NN0* NN0* |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 cle 7955 cn0 9135 NN0*cxnn0 9198 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 df-n0 9136 df-xnn0 9199 df-xadd 9730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |