Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0xadd0 | Unicode version |
Description: The sum of two extended nonnegative integers is iff each of the two extended nonnegative integers is . (Contributed by AV, 14-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xadd0 | NN0* NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9179 | . . . 4 NN0* | |
2 | elxnn0 9179 | . . . . . . 7 NN0* | |
3 | nn0re 9123 | . . . . . . . . . . . . 13 | |
4 | nn0re 9123 | . . . . . . . . . . . . 13 | |
5 | rexadd 9788 | . . . . . . . . . . . . 13 | |
6 | 3, 4, 5 | syl2an 287 | . . . . . . . . . . . 12 |
7 | 6 | eqeq1d 2174 | . . . . . . . . . . 11 |
8 | nn0ge0 9139 | . . . . . . . . . . . . 13 | |
9 | 3, 8 | jca 304 | . . . . . . . . . . . 12 |
10 | nn0ge0 9139 | . . . . . . . . . . . . 13 | |
11 | 4, 10 | jca 304 | . . . . . . . . . . . 12 |
12 | add20 8372 | . . . . . . . . . . . 12 | |
13 | 9, 11, 12 | syl2an 287 | . . . . . . . . . . 11 |
14 | 7, 13 | bitrd 187 | . . . . . . . . . 10 |
15 | 14 | biimpd 143 | . . . . . . . . 9 |
16 | 15 | expcom 115 | . . . . . . . 8 |
17 | oveq2 5850 | . . . . . . . . . . . . 13 | |
18 | 17 | eqeq1d 2174 | . . . . . . . . . . . 12 |
19 | 18 | adantr 274 | . . . . . . . . . . 11 |
20 | nn0xnn0 9181 | . . . . . . . . . . . . . 14 NN0* | |
21 | xnn0xrnemnf 9189 | . . . . . . . . . . . . . 14 NN0* | |
22 | xaddpnf1 9782 | . . . . . . . . . . . . . 14 | |
23 | 20, 21, 22 | 3syl 17 | . . . . . . . . . . . . 13 |
24 | 23 | adantl 275 | . . . . . . . . . . . 12 |
25 | 24 | eqeq1d 2174 | . . . . . . . . . . 11 |
26 | 19, 25 | bitrd 187 | . . . . . . . . . 10 |
27 | 0re 7899 | . . . . . . . . . . . . 13 | |
28 | renepnf 7946 | . . . . . . . . . . . . 13 | |
29 | 27, 28 | ax-mp 5 | . . . . . . . . . . . 12 |
30 | 29 | nesymi 2382 | . . . . . . . . . . 11 |
31 | 30 | pm2.21i 636 | . . . . . . . . . 10 |
32 | 26, 31 | syl6bi 162 | . . . . . . . . 9 |
33 | 32 | ex 114 | . . . . . . . 8 |
34 | 16, 33 | jaoi 706 | . . . . . . 7 |
35 | 2, 34 | sylbi 120 | . . . . . 6 NN0* |
36 | 35 | com12 30 | . . . . 5 NN0* |
37 | oveq1 5849 | . . . . . . . . 9 | |
38 | 37 | eqeq1d 2174 | . . . . . . . 8 |
39 | xnn0xrnemnf 9189 | . . . . . . . . . 10 NN0* | |
40 | xaddpnf2 9783 | . . . . . . . . . 10 | |
41 | 39, 40 | syl 14 | . . . . . . . . 9 NN0* |
42 | 41 | eqeq1d 2174 | . . . . . . . 8 NN0* |
43 | 38, 42 | sylan9bb 458 | . . . . . . 7 NN0* |
44 | 43, 31 | syl6bi 162 | . . . . . 6 NN0* |
45 | 44 | ex 114 | . . . . 5 NN0* |
46 | 36, 45 | jaoi 706 | . . . 4 NN0* |
47 | 1, 46 | sylbi 120 | . . 3 NN0* NN0* |
48 | 47 | imp 123 | . 2 NN0* NN0* |
49 | oveq12 5851 | . . 3 | |
50 | 0xr 7945 | . . . 4 | |
51 | xaddid1 9798 | . . . 4 | |
52 | 50, 51 | ax-mp 5 | . . 3 |
53 | 49, 52 | eqtrdi 2215 | . 2 |
54 | 48, 53 | impbid1 141 | 1 NN0* NN0* |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cle 7934 cn0 9114 NN0*cxnn0 9177 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 df-n0 9115 df-xnn0 9178 df-xadd 9709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |