ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssxnn0 Unicode version

Theorem nn0ssxnn0 9431
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0  |-  NN0  C_ NN0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 3367 . 2  |-  NN0  C_  ( NN0  u.  { +oo }
)
2 df-xnn0 9429 . 2  |- NN0*  =  ( NN0  u.  { +oo } )
31, 2sseqtrri 3259 1  |-  NN0  C_ NN0*
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197   {csn 3666   +oocpnf 8174   NN0cn0 9365  NN0*cxnn0 9428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-xnn0 9429
This theorem is referenced by:  nn0xnn0  9432  0xnn0  9434  nn0xnn0d  9437  nninfctlemfo  12556
  Copyright terms: Public domain W3C validator