Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0xnn0 | GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0 | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 9201 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℕ0cn0 9135 ℕ0*cxnn0 9198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-xnn0 9199 |
This theorem is referenced by: xnn0xadd0 9824 1tonninf 10396 |
Copyright terms: Public domain | W3C validator |