ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0xnn0d Unicode version

Theorem nn0xnn0d 9219
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
Hypothesis
Ref Expression
nn0xnn0d.1  |-  ( ph  ->  A  e.  NN0 )
Assertion
Ref Expression
nn0xnn0d  |-  ( ph  ->  A  e. NN0* )

Proof of Theorem nn0xnn0d
StepHypRef Expression
1 nn0ssxnn0 9213 . 2  |-  NN0  C_ NN0*
2 nn0xnn0d.1 . 2  |-  ( ph  ->  A  e.  NN0 )
31, 2sselid 3151 1  |-  ( ph  ->  A  e. NN0* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   NN0cn0 9147  NN0*cxnn0 9210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-xnn0 9211
This theorem is referenced by:  pcxnn0cl  12275
  Copyright terms: Public domain W3C validator