ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0xnn0d Unicode version

Theorem nn0xnn0d 9207
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
Hypothesis
Ref Expression
nn0xnn0d.1  |-  ( ph  ->  A  e.  NN0 )
Assertion
Ref Expression
nn0xnn0d  |-  ( ph  ->  A  e. NN0* )

Proof of Theorem nn0xnn0d
StepHypRef Expression
1 nn0ssxnn0 9201 . 2  |-  NN0  C_ NN0*
2 nn0xnn0d.1 . 2  |-  ( ph  ->  A  e.  NN0 )
31, 2sselid 3145 1  |-  ( ph  ->  A  e. NN0* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   NN0cn0 9135  NN0*cxnn0 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-xnn0 9199
This theorem is referenced by:  pcxnn0cl  12264
  Copyright terms: Public domain W3C validator