ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nepnf Unicode version

Theorem nn0nepnf 9401
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0nepnf  |-  ( A  e.  NN0  ->  A  =/= +oo )

Proof of Theorem nn0nepnf
StepHypRef Expression
1 pnfnre 8149 . . . . 5  |- +oo  e/  RR
21neli 2475 . . . 4  |-  -. +oo  e.  RR
3 nn0re 9339 . . . 4  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
42, 3mto 664 . . 3  |-  -. +oo  e.  NN0
5 eleq1 2270 . . 3  |-  ( A  = +oo  ->  ( A  e.  NN0  <-> +oo  e.  NN0 ) )
64, 5mtbiri 677 . 2  |-  ( A  = +oo  ->  -.  A  e.  NN0 )
76necon2ai 2432 1  |-  ( A  e.  NN0  ->  A  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    =/= wne 2378   RRcr 7959   +oocpnf 8139   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-uni 3865  df-int 3900  df-pnf 8144  df-inn 9072  df-n0 9331
This theorem is referenced by:  nn0nepnfd  9403  xnn0nnen  10619  fxnn0nninf  10621  0tonninf  10622  1tonninf  10623
  Copyright terms: Public domain W3C validator