Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0xnn0d | GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0xnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 9180 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | nn0xnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sselid 3140 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℕ0cn0 9114 ℕ0*cxnn0 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-xnn0 9178 |
This theorem is referenced by: pcxnn0cl 12242 |
Copyright terms: Public domain | W3C validator |