![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0xnn0d | GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0xnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 9244 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | nn0xnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sselid 3155 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ℕ0cn0 9178 ℕ0*cxnn0 9241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-xnn0 9242 |
This theorem is referenced by: pcxnn0cl 12312 |
Copyright terms: Public domain | W3C validator |